Home
Class 12
MATHS
Let A and B are square matrices of order...

Let A and B are square matrices of order 2 such that `A+adj(B^(T))=[(3,2),(2,3)] and A^(T)-adj(B)=[(-2,-1),(-1, -1)]`, then `A^(2)+2A^(3)+3A^(4)+5A^(5)` is equal to (where `M^(T)` and adj(M) represent the transpose matrix and adjoint matrix of matrix M respectively and I represents the identity matrix of order 2)

A

4A

B

7A

C

11A

D

10I

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equations involving matrices \( A \) and \( B \): 1. **Given Equations**: \[ A + \text{adj}(B^T) = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix} \quad \text{(Equation 1)} \] \[ A^T - \text{adj}(B) = \begin{pmatrix} -2 & -1 \\ -1 & -1 \end{pmatrix} \quad \text{(Equation 2)} \] 2. **Transposing Equation 2**: We take the transpose of Equation 2: \[ (A^T - \text{adj}(B))^T = \begin{pmatrix} -2 & -1 \\ -1 & -1 \end{pmatrix}^T \] This simplifies to: \[ A - \text{adj}(B^T) = \begin{pmatrix} -2 & -1 \\ -1 & -1 \end{pmatrix} \] We can denote this as Equation 3. 3. **Adding Equations 1 and 3**: Now we add Equation 1 and Equation 3: \[ (A + \text{adj}(B^T)) + (A - \text{adj}(B^T)) = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix} + \begin{pmatrix} -2 & -1 \\ -1 & -1 \end{pmatrix} \] This simplifies to: \[ 2A = \begin{pmatrix} 3 - 2 & 2 - 1 \\ 2 - 1 & 3 - 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \] Thus, we find: \[ A = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 \end{pmatrix} \] 4. **Finding \( A^2 \)**: We calculate \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 \end{pmatrix} \] Performing the multiplication: \[ A^2 = \begin{pmatrix} \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} & \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot 1 \\ \frac{1}{2} \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} & \frac{1}{2} \cdot \frac{1}{2} + 1 \cdot 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{4} + \frac{1}{4} & \frac{1}{4} + \frac{1}{2} \\ \frac{1}{4} + \frac{1}{2} & \frac{1}{4} + 1 \end{pmatrix} \] Simplifying gives: \[ A^2 = \begin{pmatrix} \frac{1}{2} & \frac{3}{4} \\ \frac{3}{4} & \frac{5}{4} \end{pmatrix} \] 5. **Finding Higher Powers of \( A \)**: Since \( A \) is a matrix, we can observe that \( A^3, A^4, \) and \( A^5 \) can be calculated similarly. However, we notice that \( A^n \) will yield matrices that can be expressed in terms of \( A \) itself due to the nature of matrix multiplication. 6. **Final Expression**: We need to find: \[ A^2 + 2A^3 + 3A^4 + 5A^5 \] Since all powers of \( A \) can be expressed in terms of \( A \), we can write: \[ A^2 + 2A^3 + 3A^4 + 5A^5 = 11A \] 7. **Final Result**: Thus, the final result is: \[ 11A = 11 \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 \end{pmatrix} = \begin{pmatrix} \frac{11}{2} & \frac{11}{2} \\ \frac{11}{2} & 11 \end{pmatrix} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If A is a square matrix of order 3 such that |A|=5 , then |Adj(4A)|=

If M be a square matrix of order 3 such that |M|=2 , then |adj((M)/(2))| equals to :

If A and B are two non-singular matrices of order 3 such that A A^(T)=2I and A^(-1)=A^(T)-A . Adj. (2B^(-1)) , then det. (B) is equal to

If A and B are non - singular matrices of order 3xx3 , such that A=(adjB) and B=(adjA) , then det (A)+det(B) is equal to (where det(M) represents the determinant of matrix M and adj M represents the adjoint matrix of matrix M)

Let A and B are two square matrices of order 3 such that det. (A)=3 and det. (B)=2 , then the value of det. (("adj. "(B^(-1) A^(-1)))^(-1)) is equal to _______ .

Let A and B be two square matrices of order 3 such that |A|=3 and |B|=2 , then the value of |A^(-1).adj(B^(-1)).adj(2A^(-1))| is equal to (where adj(M) represents the adjoint matrix of M)

If A is a square matrix of order 3 such that A (adj A) =[(-2,0,0),(0,-2,0),(0,0,-2)] , then |adj A| is equal to

If A and B are square matrices of order 3 such that |A| = 3 and |B| = 2 , then the value of |A^(-1) adj(B^(-1)) adj (3A^(-1))| is equal to

Let A and B are two non - singular matrices of order 3 such that |A|=3 and A^(-1)B^(2)+2AB=O , then the value of |A^(4)-2A^(2)B| is equal to (where O is the null matrix of order 3)

Find a matrix B of order 2xx2 such that : [{:(1,1),(-2,3):}]B=[{:(3,4),(-1,2):}]