Home
Class 12
MATHS
If f(x)={{:((e^((1+(1)/(x)))-a)/(e^((1)/...

If `f(x)={{:((e^((1+(1)/(x)))-a)/(e^((1)/(x))+1),":",xne0),(e,":",x=0):}` (where a and b are arbitrary constants) is continuous at x = 0, then the value of `a^(2)` is equal to
(use e = 2.7)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous at \( x = 0 \). The function is defined as follows: \[ f(x) = \begin{cases} \frac{e^{(1 + \frac{1}{x})} - a}{e^{\frac{1}{x}} + 1} & \text{if } x \neq 0 \\ e & \text{if } x = 0 \end{cases} \] ### Step 1: Find the right-hand limit as \( x \) approaches 0. We need to evaluate the limit: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{e^{(1 + \frac{1}{x})} - a}{e^{\frac{1}{x}} + 1} \] ### Step 2: Substitute \( x \) with \( 0 + h \) where \( h \to 0^+ \). Let \( x = h \) where \( h \to 0^+ \): \[ \lim_{h \to 0^+} \frac{e^{(1 + \frac{1}{h})} - a}{e^{\frac{1}{h}} + 1} \] ### Step 3: Analyze the exponential terms as \( h \to 0^+ \). As \( h \to 0^+ \), \( \frac{1}{h} \to +\infty \). Therefore: - \( e^{\frac{1}{h}} \to +\infty \) - \( e^{(1 + \frac{1}{h})} = e \cdot e^{\frac{1}{h}} \to +\infty \) Thus, we can rewrite the limit: \[ \lim_{h \to 0^+} \frac{+\infty - a}{+\infty + 1} \] ### Step 4: Simplify the limit. Since both the numerator and denominator approach infinity, we can apply L'Hôpital's Rule or analyze the dominant terms: \[ \lim_{h \to 0^+} \frac{e^{(1 + \frac{1}{h})}}{e^{\frac{1}{h}}} = \lim_{h \to 0^+} e \cdot \frac{e^{\frac{1}{h}}}{e^{\frac{1}{h}}} = e \] Thus, the limit simplifies to: \[ \lim_{h \to 0^+} \frac{+\infty - a}{+\infty} = 1 \] ### Step 5: Set the limit equal to the function value at \( x = 0 \). Since \( f(0) = e \), we have: \[ 1 - \frac{a}{+\infty} = e \] This means: \[ -\frac{a}{+\infty} \to 0 \] ### Step 6: Solve for \( a \). From the limit, we get: \[ -a = e \implies a = -e \] ### Step 7: Find \( a^2 \). Now, we need to find \( a^2 \): \[ a^2 = (-e)^2 = e^2 \] ### Step 8: Substitute the value of \( e \). Given \( e \approx 2.7 \): \[ a^2 = (2.7)^2 = 7.29 \] ### Final Answer: Thus, the value of \( a^2 \) is \( 7.29 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)={{:((2^((1)/(x))-1)/(2^((1)/(x))+1),":",xne0),(0,":,x=0):} , then f(x) is

If f(x)={{:((e^((2)/(x))-1)/(e^((2)/(x))+1),:,x ne 0),(0,:,x=0):} , then f(x) is

If f(x)= {{:(,(1)/(x)-(2)/(e^(2x)-1),x ne 0),(,1,x=0):}

If f(x)={{:(e^(|x|+|x|-1)/(|x|+|x|),":",xne0),(-1,":",x=0):} (where [.] denotes the greatest integer integer function), then

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):} at x = 0

If f(x) = {{:(x((e^(1//x) - e^(-1//x))/(e^(1//x)+e^(1//x)))",",x ne 0),(" "0",",x = 0):} , then at x = 0 f(x) is

If the function f(x), defined as f(x)={{:((a(1-xsinx)+b cosx+5)/(x^(2)),":", xne0),(3,":",x=0):} is continuous at x=0 , then the value of (b^(4)+a)/(5+a) is equal to

Let f(x)= {(((xsinx+2cos2x)/(2))^((1)/(x^(2))),,,,xne0),(e^(-K//2),,,,x=0):} if f(x) is continous at x=0 then the value of k is (a) 1 (b) 2 (c) 3 (d) 4

If the function f(x)={(cosx)^(1/x),x!=0k ,x=0 is continuous at x=0 , then the value of k is 0 (b) 1 (c) -1 (d) e

Let f(x) = (e^x x cosx-x log_e(1+x)-x)/x^2, x!=0. If f(x) is continuous at x = 0, then f(0) is equal to