Home
Class 12
CHEMISTRY
For the following electrochemical cell a...

For the following electrochemical cell at `298K`
`Pt(s)+H_(2)(g,1bar) |H^(+) (aq,1M)||M^(4+)(aq),M^(2+)(aq)|Pt(s)`
`E_(cell) = 0.092 V` when `([M^(2+)(aq)])/([M^(4+)(aq)])=10^(x)`
Guven, `E_(M^(4+)//M^(2+))^(@) = 0.151V, 2.303 (RT)/(F) = 0.059`
The value of x is-

A

`-2`

B

`-1`

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given electrochemical cell problem, we will follow these steps: ### Step 1: Write the half-cell reactions The half-cell reactions for the electrochemical cell are: - **Anode (oxidation)**: \[ H_2(g) \rightarrow 2H^+(aq) + 2e^- \] - **Cathode (reduction)**: \[ M^{4+}(aq) + 2e^- \rightarrow M^{2+}(aq) \] ### Step 2: Write the net cell reaction By combining the half-cell reactions, we cancel the electrons: \[ H_2(g) + M^{4+}(aq) \rightarrow 2H^+(aq) + M^{2+}(aq) \] ### Step 3: Apply the Nernst equation The Nernst equation is given by: \[ E_{cell} = E^\circ_{cell} - \frac{RT}{nF} \ln Q \] Where: - \( E_{cell} = 0.092 \, V \) - \( E^\circ_{cell} = E^\circ_{cathode} - E^\circ_{anode} \) - \( n = 2 \) (number of electrons transferred) - \( Q = \frac{[H^+]^2}{P_{H_2} \cdot [M^{4+}]} \) ### Step 4: Calculate \( E^\circ_{cell} \) From the problem, we know: - \( E^\circ_{M^{4+}/M^{2+}} = 0.151 \, V \) - \( E^\circ_{H^+/H_2} = 0 \, V \) Thus: \[ E^\circ_{cell} = E^\circ_{M^{4+}/M^{2+}} - E^\circ_{H^+/H_2} = 0.151 - 0 = 0.151 \, V \] ### Step 5: Substitute values into the Nernst equation Substituting the known values into the Nernst equation: \[ 0.092 = 0.151 - \frac{0.059}{2} \log \left( \frac{[M^{2+}]}{[M^{4+}]} \right) \] ### Step 6: Rearranging the equation Rearranging gives: \[ \frac{0.059}{2} \log \left( \frac{[M^{2+}]}{[M^{4+}]} \right) = 0.151 - 0.092 \] \[ \frac{0.059}{2} \log \left( \frac{[M^{2+}]}{[M^{4+}]} \right) = 0.059 \] \[ \log \left( \frac{[M^{2+}]}{[M^{4+}]} \right) = 2 \] ### Step 7: Solve for the ratio From the logarithmic equation: \[ \frac{[M^{2+}]}{[M^{4+}]} = 10^2 \] Thus: \[ \frac{[M^{2+}]}{[M^{4+}]} = 100 \] ### Step 8: Relate to x Given that: \[ \frac{[M^{2+}]}{[M^{4+}]} = 10^x \] We can conclude: \[ x = 2 \] ### Final Answer The value of \( x \) is \( 2 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

For the cell, Pt|Cl_2(g,0.4"bar")|Cl^(-)(aq,0.1M)"||"Cl^(-)(aq),0.01M)|Cl_2(g,0.2"bar")|pt

Write the cell reaction for each of the following cells. Pt,H_(2)(g)|H^(+)(aq)|Ag^(+)(aq)|Ag(s)

The pH of LHE in the following cell is : Pt, H_(2)(1atm)|H^(o+)(x M)||H^(o+)(0.1M)|H_(2)(0.1atm)Pt E_(cell)=0.295V .

Calculate the emf of the following cell at 298K : Fe(s) abs(Fe^(2+)(0.001M))abs(H^+(1M))H_2(g) (1"bar"),Pt(s) ( "Give E_("Cell")^@ = +0.44V )

Select the correct cell reaction of the cell Pt(s)|Cl_2(g)|Cl^(-)(aq)"||"Ag^+(aq)|Ag(s) :

Calculate the e.m.f. of the following cell at 298K : Pt(s)|Br_(2)(l)|Br^(-)(0.010M)||H^(+)(0.030M)|H_(2)(g)(1"bar")|Pt(s) Given : E_((1)/(2)Br_(2)//Br^(-))^(@)=+1.08V .

For an electrochemical cell Sn(s)Sn^(2+) (aq,1M)||pb^(2+) (Aq,1M)|Pb(s) the ratio ([Sn^(2+)])/([Pb^(2+)] when this cell attians equilibrium is_______ (Given : E_(sn^(2+)|Sn)^(@) = -0.14V, E_(pb^(2+|Pb^(@))= -0.13V, (2.303RT)/(F = 0.06))

pH of the anodic solution of the following cell is Pt, H_2(1atm)|H^+(xM)||H^(+)(1M)|H_2(1 atm ),Pt if E_("cell") =0.2364V.

For the galvanic cell: Zn(s) | Zn^(2+)(aq) (1.0 M) || Ni^(2+)(aq) (1.0 M) | Ni(s) , E_(cell)^o will be [Given E_((Zn^(2+)) /(Zn))^0 = -0.76 V , E_((Ni^(2+))/(Ni))^0= -0.25V ]

Pt|H_(2)(1 atm )|H^(+)(0.001M)||H^(+)(0.1M)|H_(2)(1atm)|Pt what will be the value of E_(cell) for this cell