Home
Class 12
MATHS
The value of lim(xrarr0)(secx+tanx)^(1/x...

The value of `lim_(xrarr0)(secx+tanx)^(1/x)` is equal to

A

e

B

`e^(2)`

C

`e^(-1)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the limit \( \lim_{x \to 0} ( \sec x + \tan x )^{\frac{1}{x}} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression inside the limit: \[ \sec x + \tan x = \frac{1}{\cos x} + \frac{\sin x}{\cos x} = \frac{1 + \sin x}{\cos x} \] Thus, we can rewrite the limit as: \[ \lim_{x \to 0} \left( \frac{1 + \sin x}{\cos x} \right)^{\frac{1}{x}} \] ### Step 2: Simplify the limit Now we can express the limit as: \[ \lim_{x \to 0} \left( \frac{1 + \sin x}{\cos x} \right)^{\frac{1}{x}} = \lim_{x \to 0} \left( 1 + \sin x \right)^{\frac{1}{x}} \cdot \left( \cos x \right)^{-\frac{1}{x}} \] ### Step 3: Analyze each part We know that as \( x \to 0 \): - \( \sin x \to 0 \) - \( \cos x \to 1 \) Thus, we can analyze: 1. \( \left( 1 + \sin x \right)^{\frac{1}{x}} \) 2. \( \left( \cos x \right)^{-\frac{1}{x}} \) ### Step 4: Use the limit properties The first part \( \left( 1 + \sin x \right)^{\frac{1}{x}} \) can be rewritten using the fact that \( \sin x \approx x \) as \( x \to 0 \): \[ \lim_{x \to 0} \left( 1 + \sin x \right)^{\frac{1}{x}} = \lim_{x \to 0} \left( 1 + x \right)^{\frac{1}{x}} = e \] The second part \( \left( \cos x \right)^{-\frac{1}{x}} \) approaches: \[ \lim_{x \to 0} \left( \cos x \right)^{-\frac{1}{x}} = \lim_{x \to 0} \left( 1 \right)^{-\frac{1}{x}} = 1 \] ### Step 5: Combine the results Combining both parts, we have: \[ \lim_{x \to 0} ( \sec x + \tan x )^{\frac{1}{x}} = e \cdot 1 = e \] ### Final Answer Thus, the value of the limit is: \[ \boxed{e} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0)(cos x+sinx)^((1)/(x)) is equal to to (take e = 2.71)

lim_(xrarr0)("cosec"x-cotx)/(x) is equal to

lim_(xrarr0)((1+x)^(n)-1)/(x) is equal to

The value of lim_(xrarr0) (e^(ax)-e^(bx))/(x) ,is

The value of lim_(xrarr0)(cos x+sin bx)^((a)/(x)) is equal to

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

lim_(xrarr0) (x)/(tan^-1x) is equal to

lim_(xrarr0^-)(sinx)/(sqrt(x)) is equal to

lim_(xrarr0) (a^x-b^x)/(e^x-1) is equal to

lim_(xrarr0)(x^(2)cosx)/(1-cosx) is equal to