Home
Class 12
MATHS
The negation of (~p ^^ q) vv (p ^^ ~ q) ...

The negation of `(~p ^^ q) vv (p ^^ ~ q)` is

A

`(pvv~q)^^(~pvvq)`

B

`(p^^~q)^^(~pvvq)`

C

`(p^^~q)^^(pvv~q)`

D

both `SO_(4)^(2-)` and `NO_(3)^(-)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the negation of the expression \((\neg p \land q) \lor (p \land \neg q)\), we will follow the logical negation rules step by step. ### Step-by-Step Solution: 1. **Identify the Expression**: We start with the expression \((\neg p \land q) \lor (p \land \neg q)\). 2. **Apply Negation**: We want to find the negation of the entire expression: \[ \neg((\neg p \land q) \lor (p \land \neg q)) \] 3. **Use De Morgan's Laws**: According to De Morgan's Laws, the negation of an OR statement is the AND of the negations: \[ \neg(A \lor B) = \neg A \land \neg B \] Here, let \(A = \neg p \land q\) and \(B = p \land \neg q\). Thus, we have: \[ \neg((\neg p \land q) \lor (p \land \neg q)) = \neg(\neg p \land q) \land \neg(p \land \neg q) \] 4. **Negate Each Component**: Now we need to negate each of the components: - For \(\neg(\neg p \land q)\), we again use De Morgan's Laws: \[ \neg(\neg p \land q) = \neg(\neg p) \lor \neg q = p \lor \neg q \] - For \(\neg(p \land \neg q)\), we apply De Morgan's Laws: \[ \neg(p \land \neg q) = \neg p \lor \neg(\neg q) = \neg p \lor q \] 5. **Combine the Results**: Now we combine the results from the negations: \[ (p \lor \neg q) \land (\neg p \lor q) \] 6. **Final Expression**: The final expression for the negation of \((\neg p \land q) \lor (p \land \neg q)\) is: \[ (p \lor \neg q) \land (\neg p \lor q) \] ### Conclusion: Thus, the negation of the expression \((\neg p \land q) \lor (p \land \neg q)\) is: \[ (p \lor \neg q) \land (\neg p \lor q) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(p ^^ ~q) ^^ (~p vv q) is

The negation of p ^^ (q rarr ~ r) is

Find the negation of p∨(-p ∧ q)

Observe the following statements I : The dual of [ ~p ^^ q)] vv [ p ^^ {~(q vv ~s)}] is [~(p vv q)] ^^ [p vv{~(q ^^ ~s)}] II : The dual of ~p ^^ [(~q) ^^ (p vv q) ^^ ~r] is ~p vv[~q) vv(p ^^ q) vv ~r] The true statements in the above is/are :

The negation of the propostion q vv ~ ( p ^^ r) is

The proposition ~(p vv ~q) vv ~(p vv q) is logically equivalent to

The statement ~(p ^^ q) vv q

The property ~ ( p ^^ q) -= ~ p vv ~ q is called

Using truth table show that - (p vv q) vv (~ p ^^ q ) is logically equivalent to ~ p.

The proposition ~p vv( p ^^ ~ q) is equivalent to