Home
Class 12
MATHS
If f(x)={{:(e^(|x|+|x|-1)/(|x|+|x|),":",...

If `f(x)={{:(e^(|x|+|x|-1)/(|x|+|x|),":",xne0),(-1,":",x=0):}` (where `[.]` denotes the greatest integer integer function), then

A

`f(x)` is continuous at x = 0

B

`lim_(xrarr0^(+))f(x)=-1`

C

`lim_(xrarr0^(-))f(x)=1`

D

`lim_(rarr0^(+))f(x)=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) \) defined as: \[ f(x) = \begin{cases} \frac{e^{|x| + |x| - 1}}{|x| + |x|} & \text{if } x \neq 0 \\ -1 & \text{if } x = 0 \end{cases} \] We are particularly interested in the behavior of \( f(x) \) as \( x \) approaches 0 from both the left and the right. ### Step 1: Evaluate \( \lim_{x \to 0^-} f(x) \) For \( x \to 0^- \) (approaching from the left), we have \( |x| = -x \). Thus, we can rewrite \( f(x) \): \[ f(x) = \frac{e^{-x - x - 1}}{-x - x} = \frac{e^{-2x - 1}}{-2x} \] Now we need to find the limit as \( x \) approaches 0 from the left: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{e^{-2x - 1}}{-2x} \] As \( x \to 0^- \), \( e^{-2x - 1} \) approaches \( e^{-1} \) and \( -2x \) approaches 0. Therefore, we can apply L'Hôpital's Rule since we have an indeterminate form of type \( \frac{0}{0} \). Taking the derivative of the numerator and denominator: \[ \text{Numerator's derivative: } \frac{d}{dx}(e^{-2x - 1}) = -2e^{-2x - 1} \] \[ \text{Denominator's derivative: } \frac{d}{dx}(-2x) = -2 \] Now applying L'Hôpital's Rule: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{-2e^{-2x - 1}}{-2} = e^{-1} \] ### Step 2: Evaluate \( \lim_{x \to 0^+} f(x) \) For \( x \to 0^+ \) (approaching from the right), we have \( |x| = x \). Thus, we can rewrite \( f(x) \): \[ f(x) = \frac{e^{x + x - 1}}{x + x} = \frac{e^{2x - 1}}{2x} \] Now we need to find the limit as \( x \) approaches 0 from the right: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{e^{2x - 1}}{2x} \] As \( x \to 0^+ \), \( e^{2x - 1} \) approaches \( e^{-1} \) and \( 2x \) approaches 0. Again, we have an indeterminate form \( \frac{0}{0} \), so we apply L'Hôpital's Rule: Taking the derivative of the numerator and denominator: \[ \text{Numerator's derivative: } \frac{d}{dx}(e^{2x - 1}) = 2e^{2x - 1} \] \[ \text{Denominator's derivative: } \frac{d}{dx}(2x) = 2 \] Now applying L'Hôpital's Rule: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{2e^{2x - 1}}{2} = e^{-1} \] ### Step 3: Compare the limits and check continuity We have: \[ \lim_{x \to 0^-} f(x) = e^{-1} \quad \text{and} \quad \lim_{x \to 0^+} f(x) = e^{-1} \] Both limits are equal, but we also need to check the value of \( f(0) \): \[ f(0) = -1 \] Since the limits from both sides do not equal \( f(0) \), the function is not continuous at \( x = 0 \). ### Conclusion The only correct statement is that \( \lim_{x \to 0^-} f(x) = e^{-1} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

If f(x)={{:((e^([2x]+2x+1)-1)/([2x]+2x+1),:,x ne 0),(1,":", x =0):} , then (where [.] represents the greatest integer function)

if f(x) ={{:(2x-[x]+ xsin (x-[x]),,x ne 0) ,( 0,, x=0):} where [.] denotes the greatest integer function then

Let f(x)={(x(e^([x]+x)-4)/([x]+|x|), , x!=0),(3, , x=0):} Where [ ] denotes the greatest integer function. Then,

Let f(x)={{:(8^((1)/(x))",",xlt0,),(a[x]",",a inR-{0}",",xge0):} (where [.] denotes the greatest integer function). Then f(x) is

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If f(x)={((sin([x]+x))/([x]+x),x!=0),(1,x=0):} when [.] denotes the greatest integer function, then: