Home
Class 12
MATHS
Let veca=2hati+3hatj+4hatk, vecb=hati-2h...

Let `veca=2hati+3hatj+4hatk, vecb=hati-2hatj+hatk` and `vecc=hati+hatj-hatk.` If `vecr xx veca =vecb` and `vecr.vec c=3,` then the value of `|vecr|` is equal to

A

`sqrt(155)`

B

`sqrt(17)`

C

`2sqrt(17)`

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions given in the video transcript and derive the solution systematically. ### Given: - \(\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}\) - \(\vec{b} = \hat{i} - 2\hat{j} + \hat{k}\) - \(\vec{c} = \hat{i} + \hat{j} - \hat{k}\) - \(\vec{r} \times \vec{a} = \vec{b}\) - \(\vec{r} \cdot \vec{c} = 3\) ### Step 1: Use the vector triple product identity We know that: \[ \vec{r} \times \vec{a} = \vec{b} \] Taking the dot product of both sides with \(\vec{c}\): \[ \vec{c} \cdot (\vec{r} \times \vec{a}) = \vec{c} \cdot \vec{b} \] Using the vector triple product identity: \[ \vec{c} \cdot (\vec{r} \times \vec{a}) = (\vec{r} \cdot \vec{c}) \vec{a} - (\vec{a} \cdot \vec{c}) \vec{r} \] ### Step 2: Substitute known values From the problem, we know: \[ \vec{r} \cdot \vec{c} = 3 \] Thus: \[ 3\vec{a} - (\vec{a} \cdot \vec{c}) \vec{r} = \vec{c} \cdot \vec{b} \] ### Step 3: Calculate \(\vec{a} \cdot \vec{c}\) \[ \vec{a} \cdot \vec{c} = (2\hat{i} + 3\hat{j} + 4\hat{k}) \cdot (\hat{i} + \hat{j} - \hat{k}) = 2 \cdot 1 + 3 \cdot 1 + 4 \cdot (-1) = 2 + 3 - 4 = 1 \] ### Step 4: Substitute \(\vec{a} \cdot \vec{c}\) into the equation Now substituting \(\vec{a} \cdot \vec{c} = 1\): \[ 3\vec{a} - 1\vec{r} = \vec{c} \cdot \vec{b} \] ### Step 5: Calculate \(\vec{c} \cdot \vec{b}\) \[ \vec{c} \cdot \vec{b} = (\hat{i} + \hat{j} - \hat{k}) \cdot (\hat{i} - 2\hat{j} + \hat{k}) = 1 \cdot 1 + 1 \cdot (-2) + (-1) \cdot 1 = 1 - 2 - 1 = -2 \] ### Step 6: Substitute \(\vec{c} \cdot \vec{b}\) into the equation Now we have: \[ 3\vec{a} - \vec{r} = -2 \] Thus: \[ \vec{r} = 3\vec{a} + 2 \] ### Step 7: Calculate \(3\vec{a}\) \[ 3\vec{a} = 3(2\hat{i} + 3\hat{j} + 4\hat{k}) = 6\hat{i} + 9\hat{j} + 12\hat{k} \] ### Step 8: Solve for \(\vec{r}\) \[ \vec{r} = (6 + 2)\hat{i} + 9\hat{j} + 12\hat{k} = 8\hat{i} + 9\hat{j} + 12\hat{k} \] ### Step 9: Calculate the magnitude of \(\vec{r}\) \[ |\vec{r}| = \sqrt{(8)^2 + (9)^2 + (12)^2} = \sqrt{64 + 81 + 144} = \sqrt{289} = 17 \] ### Final Answer The value of \(|\vec{r}|\) is \(17\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk , then vecaxxvecb is

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If veca=7hati+3hatj-6hatk , vecb=2hati+5hatj-hatk and vecc=-hati+2hatj+4hatk . Find (veca-vecb)xx(vecc-vecb) .

If veca=2hati-hatj+2hatk and vecb=-hati+hatj-hatk calculate veca+vecb

Let veca=hati+hatj+hatk, vecb=hati-hatj+hat2k and vecc=xhati+(x-2)hatj-hatk . If the vector vecc lies in the plane of veca and vecb then x equals

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

Let veca = hati + hatj +hatjk, vecc =hatj - hatk and a vector vecb be such that veca xx vecb = vecc and veca.vecb=3 . Then |vecb| equals: