Home
Class 12
MATHS
If |(cos theta,-1,1),(cos2 theta,4,3),(2...

If `|(cos theta,-1,1),(cos2 theta,4,3),(2,7,7)|=0`, then the number of values of `theta` in `[0, 1pi]` is

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant of the given matrix and set it equal to zero. The matrix is: \[ \begin{vmatrix} \cos \theta & -1 & 1 \\ \cos 2\theta & 4 & 3 \\ 2 & 7 & 7 \end{vmatrix} = 0 \] ### Step 1: Calculate the Determinant Using the determinant formula for a 3x3 matrix: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] where \( a, b, c \) are the elements of the first row, \( d, e, f \) are the elements of the second row, and \( g, h, i \) are the elements of the third row, we can substitute the values: \[ D = \cos \theta (4 \cdot 7 - 3 \cdot 7) - (-1)(\cos 2\theta \cdot 7 - 3 \cdot 2) + 1(\cos 2\theta \cdot 7 - 4 \cdot 2) \] Calculating each term: 1. \( 4 \cdot 7 - 3 \cdot 7 = 28 - 21 = 7 \) 2. \( \cos 2\theta \cdot 7 - 3 \cdot 2 = 7 \cos 2\theta - 6 \) 3. \( \cos 2\theta \cdot 7 - 4 \cdot 2 = 7 \cos 2\theta - 8 \) Putting it all together: \[ D = \cos \theta \cdot 7 + (7 \cos 2\theta - 6) + (7 \cos 2\theta - 8) \] This simplifies to: \[ D = 7 \cos \theta + 14 \cos 2\theta - 14 \] ### Step 2: Set the Determinant to Zero Now we set the determinant equal to zero: \[ 7 \cos \theta + 14 \cos 2\theta - 14 = 0 \] Dividing the entire equation by 7 gives: \[ \cos \theta + 2 \cos 2\theta - 2 = 0 \] ### Step 3: Substitute for \(\cos 2\theta\) Using the double angle identity, \( \cos 2\theta = 2 \cos^2 \theta - 1 \): \[ \cos \theta + 2(2 \cos^2 \theta - 1) - 2 = 0 \] This simplifies to: \[ \cos \theta + 4 \cos^2 \theta - 2 - 2 = 0 \] Which further simplifies to: \[ 4 \cos^2 \theta + \cos \theta - 4 = 0 \] ### Step 4: Solve the Quadratic Equation Now we can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 4, b = 1, c = -4 \): \[ \cos \theta = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 4 \cdot (-4)}}{2 \cdot 4} \] Calculating the discriminant: \[ 1 + 64 = 65 \] Thus, we have: \[ \cos \theta = \frac{-1 \pm \sqrt{65}}{8} \] ### Step 5: Determine Valid Values of \(\theta\) Calculating the two possible values: 1. \( \cos \theta = \frac{-1 + \sqrt{65}}{8} \) 2. \( \cos \theta = \frac{-1 - \sqrt{65}}{8} \) The second value \( \frac{-1 - \sqrt{65}}{8} \) is less than -1, which is outside the range of the cosine function. Thus, we only consider: \[ \cos \theta = \frac{-1 + \sqrt{65}}{8} \] ### Step 6: Find the Range of \(\theta\) To find the number of solutions for \( \theta \) in the interval \([0, \pi]\): - The cosine function decreases from 1 to -1 in the interval \([0, \pi]\). - Since \( \frac{-1 + \sqrt{65}}{8} \) is a valid value for cosine (between -1 and 1), there will be exactly one solution for \( \theta \) in the interval \([0, \pi]\). ### Conclusion The number of values of \( \theta \) in the interval \([0, \pi]\) is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If the points (-2, 0), (-1,(1)/(sqrt(3))) and (cos theta, sin theta) are collinear, then the number of value of theta in [0, 2pi] is

If the system of linear equations {:((cos theta)x + (sin theta) y + cos theta=0),((sin theta)x+(cos theta)y + sin theta=0),((cos theta)x + (sin theta)y -cos theta=0):} is consistent , then the number of possible values of theta, theta in [0,2pi] is :

If (cos^(3) theta )/( (1- sin theta ))+( sin^(3) theta )/( (1+ cos theta ))=1+ cos theta , then number of possible values of theta is ( where theta in [0,2pi] )

If Delta_(1) =|{:(x, sin theta, cos theta),(-sin theta, -x, 1),(cos theta, 1,x):}| and Delta_(2) =|{:(x, sin 2theta, cos 2theta),(-sin 2theta, -x, 1),(cos 2theta, 1,x):}|, x ne 0 , then for all theta in (0, pi/2) , Then, Delta_(1) + Delta_(2) =-2x^(k) . The value of k is ________.

If (costheta+cos2theta)^3=cos^3theta+cos^3 2theta, then the least positive value of theta is equal to pi/6 (b) pi/4 (c) pi/3 (d) pi/2

If theta_(1) and theta_(2) be respectively the smallest and the largest values of theta in (0, 2pi)-(pi) which satisfy the equation, 2cot^(2)theta-(5)/(sintheta)+4=0 , then int_(theta_(1))^(theta_(2))cos^(2)3thetad theta is equal to :

If the eccentricity of the hyperbola (x^(2))/((1+sin theta)^(2))-(y^(2))/(cos^(2)theta)=1 is (2)/(sqrt3) , then the sum of all the possible values of theta is (where, theta in (0, pi) )

If costheta+cos3theta+cos5theta+cos7theta=0 , then general value of theta is:

If sin theta = (1)/(2)cos theta , and 0 le theta le (pi)/(2) , the value of (1)/(2)sin theta is

If cos theta= -1/2 and pi < theta < (3pi)/2 then find the value of 4tan^2 theta- 3cosec^2 theta