Home
Class 12
MATHS
The maximum value of x that satisfies th...

The maximum value of x that satisfies the equation `sin^(-1)((2sqrt(15))/(|x|))=cos^(-1)((14)/(|x|))` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1}\left(\frac{2\sqrt{15}}{|x|}\right) = \cos^{-1}\left(\frac{14}{|x|}\right) \), we will follow these steps: ### Step 1: Rewrite the equation We know that \( \sin^{-1}(y) + \cos^{-1}(y) = \frac{\pi}{2} \). Therefore, we can rewrite the equation as: \[ \sin^{-1}\left(\frac{2\sqrt{15}}{|x|}\right) + \cos^{-1}\left(\frac{14}{|x|}\right) = \frac{\pi}{2} \] This implies: \[ \cos^{-1}\left(\frac{14}{|x|}\right) = \frac{\pi}{2} - \sin^{-1}\left(\frac{2\sqrt{15}}{|x|}\right) \] ### Step 2: Use the identity for cosine inverse Using the identity \( \cos^{-1}(y) = \sin^{-1}(\sqrt{1 - y^2}) \), we can express the cosine term: \[ \cos^{-1}\left(\frac{14}{|x|}\right) = \sin^{-1}\left(\sqrt{1 - \left(\frac{14}{|x|}\right)^2}\right) \] ### Step 3: Set the expressions equal Now we set the two expressions equal: \[ \sin^{-1}\left(\frac{2\sqrt{15}}{|x|}\right) = \sin^{-1}\left(\sqrt{1 - \left(\frac{14}{|x|}\right)^2}\right) \] ### Step 4: Eliminate the sine inverse Since the sine inverse function is one-to-one in its range, we can equate the arguments: \[ \frac{2\sqrt{15}}{|x|} = \sqrt{1 - \left(\frac{14}{|x|}\right)^2} \] ### Step 5: Square both sides Squaring both sides gives: \[ \left(\frac{2\sqrt{15}}{|x|}\right)^2 = 1 - \left(\frac{14}{|x|}\right)^2 \] This simplifies to: \[ \frac{60}{x^2} = 1 - \frac{196}{x^2} \] ### Step 6: Combine terms Rearranging the equation, we have: \[ \frac{60}{x^2} + \frac{196}{x^2} = 1 \] \[ \frac{256}{x^2} = 1 \] ### Step 7: Solve for |x| Multiplying both sides by \( x^2 \) gives: \[ 256 = x^2 \] Taking the square root: \[ |x| = 16 \] ### Step 8: Determine the maximum value of x Thus, \( x \) can be either \( 16 \) or \( -16 \). Since we are looking for the maximum value of \( x \): \[ \text{Maximum value of } x = 16 \] ### Final Answer: The maximum value of \( x \) that satisfies the equation is \( \boxed{16} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of x which satisfies the inequality (sin^(-1)x)^(2)ge(cos^(-1)x)^(2) is

The value of x satisfying the equation cos^(-1)3x+sin^(-1)2x=pi is

If the maximum value of x which satisfies the inequality sin^(-1)(sinx) ge cos^(-1)(sinx)" for "x in (pi)/(2), 2pi" is " lambda, then (2lambda)/(3) is equal to (take pi=3.14 )

Solve sin^(-1)(14)/(|x|)+sin^(-1)(2sqrt(15))/(|x|)=pi/2

Find the value of x satisfying the equation 2cos^(-1)(1-x)-3cos^(-1)x=pi

The sum of values of x satisfying the equation (31+8sqrt(15))^(x^2-3)+1=(32+8sqrt(15))^(x^2-3) is (a) 3 (b) 0 (c) 2 (d) none of these

The number of solutions for the equation sin^(-1) sqrt((x^(2)-x+1))+cos^(-1)sqrt((x^(2)-x))=pi is :

The set of value of x, satisfying the equation tan^(2)(sin^(-1)x) gt 1 is :

The set of values of x, satisfying the equation tan^2(sin^-1x) > 1 is -

The sum of all possible values of x satisfying the equation sin^(-1)(3x-4x^(3))+cos^(-1)(4x^(3)-3x)=(pi)/(2) is