Home
Class 12
MATHS
If I(n)=(d^(n))/(dx^(n))(x^(n)lnx), then...

If `I_(n)=(d^(n))/(dx^(n))(x^(n)lnx)`, then the value of `(1)/(50)(I_(7)-7I_(6))` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( I_n = \frac{d^n}{dx^n}(x^n \ln x) \) and find the value of \( \frac{1}{50}(I_7 - 7I_6) \). ### Step 1: Calculate \( I_n \) We start with the expression for \( I_n \): \[ I_n = \frac{d^n}{dx^n}(x^n \ln x) \] Using the product rule for differentiation, we can express \( I_n \) as: \[ I_n = \frac{d^n}{dx^n}(x^n) \cdot \ln x + x^n \cdot \frac{d^n}{dx^n}(\ln x) \] ### Step 2: Differentiate \( x^n \) The \( n \)-th derivative of \( x^n \) is given by: \[ \frac{d^n}{dx^n}(x^n) = n! \quad \text{(for \( n \geq 0 \))} \] ### Step 3: Differentiate \( \ln x \) The \( n \)-th derivative of \( \ln x \) can be calculated using the formula: \[ \frac{d^n}{dx^n}(\ln x) = \frac{(-1)^{n-1}(n-1)!}{x^n} \quad \text{(for \( n \geq 1 \))} \] ### Step 4: Substitute back into \( I_n \) Substituting these derivatives back into the expression for \( I_n \): \[ I_n = n! \ln x + x^n \cdot \frac{(-1)^{n-1}(n-1)!}{x^n} \] \[ I_n = n! \ln x - (-1)^{n-1}(n-1)! \] ### Step 5: Calculate \( I_6 \) and \( I_7 \) Now, we can find \( I_6 \) and \( I_7 \): \[ I_6 = 6! \ln x - (-1)^{5} \cdot 5! = 720 \ln x + 120 \] \[ I_7 = 7! \ln x - (-1)^{6} \cdot 6! = 5040 \ln x - 720 \] ### Step 6: Compute \( I_7 - 7I_6 \) Now, we compute \( I_7 - 7I_6 \): \[ I_7 - 7I_6 = (5040 \ln x - 720) - 7(720 \ln x + 120) \] \[ = 5040 \ln x - 720 - 5040 \ln x - 840 \] \[ = -720 - 840 = -1560 \] ### Step 7: Calculate \( \frac{1}{50}(I_7 - 7I_6) \) Finally, we calculate: \[ \frac{1}{50}(I_7 - 7I_6) = \frac{1}{50}(-1560) = -31.2 \] ### Final Answer Thus, the value of \( \frac{1}{50}(I_7 - 7I_6) \) is: \[ \boxed{-31.2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^(2)(2dx)/((1-x^(n))) , then the value of lim_(nrarroo)I_(n) is equal to

Let I_(n) =int _(1) ^(e^(2))(ln x)^(n) dx (x ^(2)), then the value of 3I_(n)+nI_(n-1) equals to:

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

Consider the integral I_(n)=int_(0)^((n)/(4))(sin(2n-1)x)/(sinx)dx , then the value of I_(20)-I_(19) is

The value of Sigma_(i=1)^(n)(.^(n+1)C_(i)-.^(n)C_(i)) is equal to

If 4cos36^(@)+cot(7(1^(@))/(2))=sqrt(n_(1))+sqrt(n_(2))+sqrt(n_(3))+sqrt(n_(4))+sqrt(n_(5))+sqrt(n_(6)) , then the value of ((Sigma_(i=1)^(6)n_(i)^(2))/(10)) is equal to

Consider I_(1)=int_(10)^(20)(lnx)/(lnx+ln(30-x))dx and I_(2)=int_(20)^(30)(lnx)/(lnx +ln(50-x))dx . Then, the value of (I_(1))/(I_(2)) is

Let I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N) then

If I_n=int_0^1(1-x^5)^n dx ,t h e n(55)/7(I_(10))/(I_(11)) is equal to ___

IfI_n=int_0^1(1-x^5)^n dx ,t h e n(55)/7(I_(10))/(I_(11)) is equal to