Home
Class 12
MATHS
If A=[(3,-2),(7,-5)], then the value of ...

If `A=[(3,-2),(7,-5)]`, then the value of `|-3A^(2019)+A^(2020)|` is equal to

A

`-14`

B

28

C

14

D

`2^(2019)*14`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the determinant \( |-3A^{2019} + A^{2020}| \) where \( A = \begin{pmatrix} 3 & -2 \\ 7 & -5 \end{pmatrix} \). ### Step 1: Factor out \( A^{2019} \) We can rewrite the expression inside the determinant: \[ -3A^{2019} + A^{2020} = A^{2019}(-3I + A) \] where \( I \) is the identity matrix. ### Step 2: Use the property of determinants Using the property of determinants, we have: \[ | -3A^{2019} + A^{2020} | = | A^{2019}(-3I + A) | \] This can be simplified using the determinant property: \[ |A^{2019}(-3I + A)| = |A^{2019}| \cdot |-3I + A| \] ### Step 3: Calculate \( |A^{2019}| \) The determinant of \( A^{2019} \) can be calculated as: \[ |A^{2019}| = |A|^{2019} \] ### Step 4: Calculate \( |A| \) Now we need to find \( |A| \): \[ |A| = \begin{vmatrix} 3 & -2 \\ 7 & -5 \end{vmatrix} = (3)(-5) - (-2)(7) = -15 + 14 = -1 \] Thus, \[ |A| = -1 \] Therefore, \[ |A^{2019}| = (-1)^{2019} = -1 \] ### Step 5: Calculate \( |-3I + A| \) Next, we calculate \( |-3I + A| \): \[ -3I + A = \begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix} + \begin{pmatrix} 3 & -2 \\ 7 & -5 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 7 & -8 \end{pmatrix} \] Now, we find the determinant: \[ |-3I + A| = \begin{vmatrix} 0 & -2 \\ 7 & -8 \end{vmatrix} = (0)(-8) - (-2)(7) = 0 + 14 = 14 \] ### Step 6: Combine results Now we combine the results: \[ |-3A^{2019} + A^{2020}| = |A^{2019}| \cdot |-3I + A| = (-1) \cdot 14 = -14 \] ### Final Answer Thus, the value of \( |-3A^{2019} + A^{2020}| \) is \( \boxed{-14} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is a continuous function such that f(x) gt 0 for all x gt 0 and (f(x))^(2020)=1+int_(0)^(x) f(t) dt , then the value of {f(2020)}^(2019) is equal to

Find the value of: (-5)-:3/7

If x^(3)=7^(5) , what is the value of x ?

If (1)(2020)+(2)(2019)+(3)(2018)+…….+(2020)(1)=2020xx2021xxk, then the value of (k)/(100) is equal to

The value of "tan"5A-"tan"3A-"tan"2A is equal to

In the expansion of (ax+b)^(2020) , if the coefficient of x^(2) and x^(3) are equal, then the value of (9)/(100)((b)/(a)) is equal to

The value of (5.86 xx 3.96)/(2.86) will be equal to

The value of 5 +(7)/(10)+(3)/(100) is

Let veca and vecb are unit vectors such that |veca+vecb|=(3)/(2) , then the value of (2veca+7vecb).(4veca+3vecb+2020vecaxxvecb) is equal to

If {[(5,1,4),(7,6,2),(1,3,5)][(1,6,-7),(6,2,4),(-7,4,3)][(5,7,1),(1,6,3),(4,2,5)]}^(2020)=[(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))] , then the value of 2|a_(2)-b_(1)|+3|a_(3)-c_(1)|+4|b_(3)-c_(2)| is equal to