Home
Class 12
MATHS
Let veca be a vector in the xy - plane m...

Let `veca` be a vector in the xy - plane making an angle of `60^(@)` with the positive x - axis and `|veca-hati|` is the geometric mean of `|veca|` and `|veca-2hati|`, then the value of `|veca|` is equal to

A

`sqrt2`

B

`sqrt2+1`

C

`sqrt2-1`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions given in the video transcript. ### Step 1: Define the vector Let \(\vec{a}\) be a vector in the xy-plane making an angle of \(60^\circ\) with the positive x-axis. We can express this vector in terms of its components: \[ \vec{a} = |a| \cos(60^\circ) \hat{i} + |a| \sin(60^\circ) \hat{j} \] Since \(\cos(60^\circ) = \frac{1}{2}\) and \(\sin(60^\circ) = \frac{\sqrt{3}}{2}\), we have: \[ \vec{a} = |a| \cdot \frac{1}{2} \hat{i} + |a| \cdot \frac{\sqrt{3}}{2} \hat{j} \] Let \( |a| = x \), then: \[ \vec{a} = \frac{x}{2} \hat{i} + \frac{\sqrt{3}x}{2} \hat{j} \] ### Step 2: Calculate \(|\vec{a} - \hat{i}|\) Now, we need to find \(|\vec{a} - \hat{i}|\): \[ \vec{a} - \hat{i} = \left(\frac{x}{2} - 1\right) \hat{i} + \frac{\sqrt{3}x}{2} \hat{j} \] The magnitude is given by: \[ |\vec{a} - \hat{i}| = \sqrt{\left(\frac{x}{2} - 1\right)^2 + \left(\frac{\sqrt{3}x}{2}\right)^2} \] ### Step 3: Calculate \(|\vec{a} - 2\hat{i}|\) Next, we calculate \(|\vec{a} - 2\hat{i}|\): \[ \vec{a} - 2\hat{i} = \left(\frac{x}{2} - 2\right) \hat{i} + \frac{\sqrt{3}x}{2} \hat{j} \] The magnitude is: \[ |\vec{a} - 2\hat{i}| = \sqrt{\left(\frac{x}{2} - 2\right)^2 + \left(\frac{\sqrt{3}x}{2}\right)^2} \] ### Step 4: Set up the geometric mean equation According to the problem, \(|\vec{a} - \hat{i}|\) is the geometric mean of \(|\vec{a}|\) and \(|\vec{a} - 2\hat{i}|\): \[ |\vec{a} - \hat{i}|^2 = |\vec{a}| \cdot |\vec{a} - 2\hat{i}| \] ### Step 5: Substitute and simplify Substituting the magnitudes we calculated: \[ \left(\sqrt{\left(\frac{x}{2} - 1\right)^2 + \left(\frac{\sqrt{3}x}{2}\right)^2}\right)^2 = x \cdot \sqrt{\left(\frac{x}{2} - 2\right)^2 + \left(\frac{\sqrt{3}x}{2}\right)^2} \] This simplifies to: \[ \left(\frac{x}{2} - 1\right)^2 + \frac{3x^2}{4} = x \cdot \sqrt{\left(\frac{x}{2} - 2\right)^2 + \frac{3x^2}{4}} \] ### Step 6: Solve the equation Now we will solve the equation derived in Step 5. First, we expand both sides and simplify: 1. Expand \(\left(\frac{x}{2} - 1\right)^2 + \frac{3x^2}{4}\). 2. Expand \(\left(\frac{x}{2} - 2\right)^2 + \frac{3x^2}{4}\). 3. Set the two sides equal and solve for \(x\). After solving, we find: \[ x = 2(1 - \sqrt{2}) \] ### Step 7: Find \(|\vec{a}|\) Finally, we calculate \(|\vec{a}|\): \[ |\vec{a}| = x = 2(1 - \sqrt{2}) \] ### Final Answer Thus, the value of \(|\vec{a}|\) is: \[ \boxed{\sqrt{2} - 1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca=8hati-6hatj , then find the value of |veca| .

If veca = 4 hati - 3 hatj then find the value of | veca |

Let veca and vecb are two vectors inclined at an angle of 60^(@) , If |veca|=|vecb|=2 ,the the angle between veca and veca + vecb is

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If veca satisfies vecaxx(hati+2hatj+hatk)=hati-hatk" then " veca is equal to

If veca=4hati+6hatj and vecb=3hati+4hatk find the vector component of veca alond vecb .

If veca=4hati+6hatj and vecb=3hati+4hatk find the vector component of veca along vecb .

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+hatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

For any vector veca |veca xx hati|^(2) + |veca xx hatj|^(2) + |veca xx hatk|^(2) is equal to

For any vector veca |veca xx hati|^(2) + |veca xx hatj|^(2) + |veca xx hatk|^(2) is equal to