Home
Class 12
MATHS
If x=sin(2tan^(-1)3)and y=sin((1)/(2)tan...

If `x=sin(2tan^(-1)3)and y=sin((1)/(2)tan^(-1)(4/3))`, then

A

`2x=1-y`

B

`x^(2)=1-2y`

C

`x^(2)=1+y`

D

`y^(2)=2x-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( x \) and \( y \) given by the equations: \[ x = \sin(2 \tan^{-1}(3)) \] \[ y = \sin\left(\frac{1}{2} \tan^{-1}\left(\frac{4}{3}\right)\right) \] ### Step 1: Calculate \( x \) Let \( \theta = \tan^{-1}(3) \). Then, we have: \[ x = \sin(2\theta) \] Using the double angle formula for sine, we know: \[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \] Now, we need to find \( \sin(\theta) \) and \( \cos(\theta) \). Since \( \theta = \tan^{-1}(3) \), we can represent it in a right triangle where the opposite side is 3 and the adjacent side is 1. The hypotenuse can be calculated using the Pythagorean theorem: \[ \text{Hypotenuse} = \sqrt{3^2 + 1^2} = \sqrt{9 + 1} = \sqrt{10} \] Thus, we have: \[ \sin(\theta) = \frac{3}{\sqrt{10}}, \quad \cos(\theta) = \frac{1}{\sqrt{10}} \] Now substituting these values back into the double angle formula: \[ x = 2 \cdot \frac{3}{\sqrt{10}} \cdot \frac{1}{\sqrt{10}} = \frac{6}{10} = \frac{3}{5} \] ### Step 2: Calculate \( y \) Let \( \phi = \tan^{-1}\left(\frac{4}{3}\right) \). Then, we have: \[ y = \sin\left(\frac{1}{2} \phi\right) \] Using the half angle formula for sine, we know: \[ \sin\left(\frac{1}{2} \phi\right) = \sqrt{\frac{1 - \cos(\phi)}{2}} \] Now, we need to find \( \cos(\phi) \). Since \( \phi = \tan^{-1}\left(\frac{4}{3}\right) \), we can represent it in a right triangle where the opposite side is 4 and the adjacent side is 3. The hypotenuse can be calculated using the Pythagorean theorem: \[ \text{Hypotenuse} = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \] Thus, we have: \[ \cos(\phi) = \frac{3}{5} \] Now substituting this value back into the half angle formula: \[ y = \sqrt{\frac{1 - \frac{3}{5}}{2}} = \sqrt{\frac{\frac{2}{5}}{2}} = \sqrt{\frac{1}{5}} = \frac{1}{\sqrt{5}} \] ### Step 3: Check the options Now we have: \[ x = \frac{3}{5}, \quad y = \frac{1}{\sqrt{5}} \] We will check the given options: 1. **Option 1:** \( 2x = 1 - y \) \[ 2 \cdot \frac{3}{5} = \frac{6}{5}, \quad 1 - \frac{1}{\sqrt{5}} \text{ (not equal)} \] 2. **Option 2:** \( x^2 = 1 - 2y \) \[ \left(\frac{3}{5}\right)^2 = \frac{9}{25}, \quad 1 - 2 \cdot \frac{1}{\sqrt{5}} \text{ (not equal)} \] 3. **Option 3:** \( x^2 = 1 + y \) \[ \frac{9}{25} = 1 + \frac{1}{\sqrt{5}} \text{ (not equal)} \] 4. **Option 4:** \( x^2 = 2x - 1 \) \[ \frac{9}{25} = 2 \cdot \frac{3}{5} - 1 \implies \frac{9}{25} = \frac{6}{5} - 1 = \frac{6}{5} - \frac{5}{5} = \frac{1}{5} = \frac{5}{25} \text{ (not equal)} \] ### Conclusion After checking all options, we find that none of the options are satisfied.
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sin(2tan^(-1)2)and y=sin((1)/(2)tan^(-1).(4)/(3)) , then prove that y^2 = 1 - x

If x=sin(2tan^(- 1)2), y=sin(1/2tan^(- 1)(4/3)) , then -

sin (tan ^(-1)2x)

Show that: cos(2tan^(-1)(1/7))=sin(4tan^(-1)(1/3))

sin(2tan^(-1) .(4)/(5))= ?

Evaluate: sin(tan^(-1)(3/4))

Show that: cos(2tan^-1(1/7))=sin(4tan^-1(1/3))

The angle between the normals of ellipse 4x^2 + y^2 = 5 , at the intersection of 2x+y=3 and the ellipse is (A) tan^(-1) (3/5) (B) tan^(-1) (3/4) (C) tan^(-1) (4/3) (D) tan^(-1) (4/5)

If int ( dx )/(5 + 4 sin x) = A tan^(-1) ( B tan ((x)/(2)) + (4)/(3)) + C , then :

If A = 2 tan^(-1) (2 sqrt2 -1) and B = 3 sin^(-1) ((1)/(3)) + sin^(-1) ((3)/(5)) , then which is greater ?