Home
Class 12
MATHS
The shortest distance between the lines ...

The shortest distance between the lines `(x-2)/(2)=(y-3)/(2)=(z-0)/(1) and (x+4)/(-1)=(y-7)/(8)=(z-5)/(4)` lies in the interval

A

`[0, 1)`

B

`[1, 2)`

C

`(2, 3]`

D

`(3, 4]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance between the two given lines, we can follow these steps: ### Step 1: Write the lines in vector form The lines are given in symmetric form. We can convert them into vector form. For the first line: \[ \frac{x-2}{2} = \frac{y-3}{2} = \frac{z-0}{1} \] This can be represented as: \[ \mathbf{r_1} = (2, 3, 0) + \lambda (2, 2, 1) \] where \( \mathbf{A_1} = (2, 3, 0) \) and \( \mathbf{B_1} = (2, 2, 1) \). For the second line: \[ \frac{x+4}{-1} = \frac{y-7}{8} = \frac{z-5}{4} \] This can be represented as: \[ \mathbf{r_2} = (-4, 7, 5) + \mu (-1, 8, 4) \] where \( \mathbf{A_2} = (-4, 7, 5) \) and \( \mathbf{B_2} = (-1, 8, 4) \). ### Step 2: Calculate \( \mathbf{A_2} - \mathbf{A_1} \) Now, we need to find \( \mathbf{A_2} - \mathbf{A_1} \): \[ \mathbf{A_2} - \mathbf{A_1} = (-4, 7, 5) - (2, 3, 0) = (-6, 4, 5) \] ### Step 3: Calculate the cross product \( \mathbf{B_1} \times \mathbf{B_2} \) Next, we need to calculate the cross product \( \mathbf{B_1} \times \mathbf{B_2} \): \[ \mathbf{B_1} = (2, 2, 1), \quad \mathbf{B_2} = (-1, 8, 4) \] Using the determinant method for the cross product: \[ \mathbf{B_1} \times \mathbf{B_2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 2 & 1 \\ -1 & 8 & 4 \end{vmatrix} \] Calculating the determinant: \[ = \mathbf{i}(2 \cdot 4 - 1 \cdot 8) - \mathbf{j}(2 \cdot 4 - 1 \cdot (-1)) + \mathbf{k}(2 \cdot 8 - 2 \cdot (-1)) \] \[ = \mathbf{i}(8 - 8) - \mathbf{j}(8 + 1) + \mathbf{k}(16 + 2) \] \[ = 0\mathbf{i} - 9\mathbf{j} + 18\mathbf{k} = (0, -9, 18) \] ### Step 4: Calculate the dot product \( (\mathbf{A_2} - \mathbf{A_1}) \cdot (\mathbf{B_1} \times \mathbf{B_2}) \) Now, we calculate the dot product: \[ (\mathbf{A_2} - \mathbf{A_1}) \cdot (\mathbf{B_1} \times \mathbf{B_2}) = (-6, 4, 5) \cdot (0, -9, 18) \] \[ = (-6)(0) + (4)(-9) + (5)(18) = 0 - 36 + 90 = 54 \] ### Step 5: Calculate the magnitude of \( \mathbf{B_1} \times \mathbf{B_2} \) Next, we find the magnitude of \( \mathbf{B_1} \times \mathbf{B_2} \): \[ \|\mathbf{B_1} \times \mathbf{B_2}\| = \sqrt{0^2 + (-9)^2 + 18^2} = \sqrt{0 + 81 + 324} = \sqrt{405} = 9\sqrt{5} \] ### Step 6: Calculate the shortest distance Finally, we can use the formula for the shortest distance \( d \): \[ d = \frac{|(\mathbf{A_2} - \mathbf{A_1}) \cdot (\mathbf{B_1} \times \mathbf{B_2})|}{\|\mathbf{B_1} \times \mathbf{B_2}\|} \] \[ d = \frac{54}{9\sqrt{5}} = \frac{6}{\sqrt{5}} = \frac{6\sqrt{5}}{5} \] ### Step 7: Determine the interval To find the interval in which the shortest distance lies, we approximate \( \sqrt{5} \) (which is approximately between 2 and 3): \[ \frac{6\sqrt{5}}{5} \approx \frac{6 \times 2.236}{5} \approx \frac{13.416}{5} \approx 2.6832 \] Thus, the shortest distance lies between 2 and 3. ### Final Answer The shortest distance between the lines lies in the interval \( (2, 3) \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The shortest distance between the lines (x-3)/3=(y-8)/(-1)=(z-3)/1 and (x+3)/(-3)=(y+7)/2=(z-6)/4 is

Find the shortest distance between the lines (x)/2=(y-2)/3=(z-4)/3 and (x-1)/3=(y-2)/7=(z-3)/8

The shortest distance between the lines (x-1)/2= (y-1)/3=(z+2)/6and (x-2)/4=(y+1)/1=(z-3)/7

Find the shortest distance between the lines (x-1)/2=(y-2)/4=(z-3)/7 and (x-1)/4=(y-2)/5=(z-3)/7

If the shortest distance between the lines (x-3)/(3)=(y-8)/(-1)=(z-3)/(1) and (x+3)/(-3)=(y+7)/(2)=(z-6)/(4) is lambdasqrt(30) unit, then the value of lambda is

Find the shortest distance between the lines (x+3)/(-4) =(y-6)/(3)=(z)/(2) " and " (x+2)/(-4) =(y)/(1)=(z-7)/(1)

Find the shortest distance between the lines (x)/(5)= (y-2)/(2) =(3-z)/(-3) and (x+3)/(5)=(1-y)/(-2)=(z+4)/(3)

Find the shortest distance between the lines (x+1)/7=(y+1)/(-6)=(z+1)/1 and (x-3)/1=(y-5)/(-2)=(z-7)/1

Find the shortest distance between the lines (x+1)/7=(y+1)/(-6)=(z+1)/1 and (x-3)/1=(y-5)/(-2)=(z-7)/1

The shortest distance between the lines (x-3)/(2) = (y +15)/(-7) = (z-9)/(5) and (x+1)/(2) = (y-1)/(1) = (z-9)/(-3) is :