Home
Class 12
MATHS
If x^(2a)y^(3b)=e^(5m), x^(3c)y^(4d)=e^(...

If `x^(2a)y^(3b)=e^(5m), x^(3c)y^(4d)=e^(2n), Delta_(1)=|(5m, 3b),(2n, 4d)|, Delta_(2)=|(2a, 5m),(3c, 2n)| and Delta_(3)=|(2a, 3b),(3c, 4d)|`, then the values of x and y are

A

`(Delta_(1))/(Delta_(3)), (Delta_(2))/(Delta_(3))`

B

`(Delta_(2))/(Delta_(1)),(Delta_(3))/(Delta_(1))`

C

`log((Delta_(1))/(Delta_(3))), log((Delta_(2))/(Delta_(3)))`

D

`e^((Delta_(1))/(Delta_(3))`,`e^((Delta_(2))/(Delta_(3)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step-by-step, we will use logarithmic properties and determinants. Let's break down the solution: ### Step 1: Set Up the Equations We start with the equations given in the problem: 1. \( x^{2a} y^{3b} = e^{5m} \) 2. \( x^{3c} y^{4d} = e^{2n} \) ### Step 2: Take Logarithms Taking the natural logarithm on both sides of each equation: 1. From \( x^{2a} y^{3b} = e^{5m} \): \[ 2a \ln x + 3b \ln y = 5m \] 2. From \( x^{3c} y^{4d} = e^{2n} \): \[ 3c \ln x + 4d \ln y = 2n \] ### Step 3: Write in Matrix Form We can express these equations in matrix form: \[ \begin{pmatrix} 2a & 3b \\ 3c & 4d \end{pmatrix} \begin{pmatrix} \ln x \\ \ln y \end{pmatrix} = \begin{pmatrix} 5m \\ 2n \end{pmatrix} \] ### Step 4: Apply Cramer’s Rule Using Cramer's rule, we can find \( \ln x \) and \( \ln y \): 1. **For \( \ln x \)**: \[ \ln x = \frac{\Delta_1}{\Delta} \] where \( \Delta_1 \) is the determinant of the matrix formed by replacing the first column with the constants on the right side: \[ \Delta_1 = \begin{vmatrix} 5m & 3b \\ 2n & 4d \end{vmatrix} = (5m)(4d) - (3b)(2n) = 20md - 6bn \] And \( \Delta \) is the determinant of the original coefficients: \[ \Delta = \begin{vmatrix} 2a & 3b \\ 3c & 4d \end{vmatrix} = (2a)(4d) - (3b)(3c) = 8ad - 9bc \] Thus, \[ \ln x = \frac{20md - 6bn}{8ad - 9bc} \] 2. **For \( \ln y \)**: \[ \ln y = \frac{\Delta_2}{\Delta} \] where \( \Delta_2 \) is the determinant formed by replacing the second column: \[ \Delta_2 = \begin{vmatrix} 2a & 5m \\ 3c & 2n \end{vmatrix} = (2a)(2n) - (5m)(3c) = 4an - 15mc \] Thus, \[ \ln y = \frac{4an - 15mc}{8ad - 9bc} \] ### Step 5: Exponentiate to Find \( x \) and \( y \) Now we can find \( x \) and \( y \) by exponentiating the logarithmic results: 1. \( x = e^{\ln x} = e^{\frac{20md - 6bn}{8ad - 9bc}} \) 2. \( y = e^{\ln y} = e^{\frac{4an - 15mc}{8ad - 9bc}} \) ### Final Answer Thus, the values of \( x \) and \( y \) are: \[ x = e^{\frac{20md - 6bn}{8ad - 9bc}}, \quad y = e^{\frac{4an - 15mc}{8ad - 9bc}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^a y^b=e^m , x^c y^d=e^n ,Delta_1=|(m,b),(n,d)|,and Delta_2 =|(a,m),(c,n)| and Delta_3=|(a,b),(c,d)|, then the values of x and y are

If Delta_1=|[2a,b,e],[2d,e,f],[4x,2y,2z]|,Delta_2=|[f,2d,e],[2z,4x,2y],[e,2a,b]| , then the value of Delta_1-Delta_2 is

If 2(2n+5)=3\ (3n-10), then n= (a)5 (b) 3 (c)7 (d) 8

Given A=|[a,b,2c],[d,e,2f],[l,m,2n]|,B=|[f,2d,e],[2n,4l,2m],[c,2a,b]| , then the value of B//A is ___________.

The solution of the differential equation (x+(x^3)/(3!)+(x^5)/(5!)+)/(1+(x^2)/(2!)+(x^4)/(4!)+)=(dx-dy)/(dx+dy)i s (a) ( b ) (c)2y( d ) e^(( e ) (f)2x (g))( h )=C( i ) e^(( j ) (k)2x (l))( m )+1( n ) (o) (p) ( q ) (r)2y( s ) e^(( t ) (u)2x (v))( w )=C( x ) e^(( y ) (z)2x (aa))( b b )-1( c c ) (dd) (ee) ( f f ) (gg) y( h h ) e^(( i i ) (jj)2x (kk))( l l )=C( m m ) e^(( n n ) (oo)2x (pp))( q q )+2( r r ) (ss) (d) None of these

If Delta A B C ~ Delta D E F such that B C=3c m , E F=4c m and a r( A B C)=54 c m^2 , then a r( D E F)=

In the given figure, Delta A B C , A B=3c m , B C=4c m\ a n d\ A C=5c m . Name the smallest and the largest angles of the triangle.

Let A and B be two sets such that n(A)=5\ a n d\ n(B)=2,\ if\ a ,\ b ,\ c ,\ d ,\ e are distinct and (a ,2),\ (b ,3),\ (c ,2),\ (d ,3),\ (e ,2) are in AxxB , find A and B.

If (a-2b-3c+4d)(a+2b+3c+4d) = (a+2b-3c-4d)(a-2b+3c-4d) then 2ad = "(a) 3bc (b) bc (c) 5bc (d) 2bc"

If (x ,3)a n d\ (3,5) are the extremities of a diameter of a circle with centre at (2, y) then the values of x\ a n d\ y are a. (3,1) b. x=4, y=1 c. x=8, y=2 d. none of these