Home
Class 12
MATHS
Let y=sqrt(xlog(e)x). If the value of (d...

Let `y=sqrt(xlog_(e)x)`. If the value of `(dy)/(dx)` at `x=e^(4)` is k, then the value of `4e^(3)k` is (use e = 2.7 )

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will differentiate the function \( y = \sqrt{x \log_e x} \) and evaluate \( \frac{dy}{dx} \) at \( x = e^4 \). Finally, we will calculate \( 4e^3k \). ### Step 1: Differentiate \( y \) Given: \[ y = \sqrt{x \log_e x} \] We can rewrite this as: \[ y = (x \log_e x)^{1/2} \] Using the chain rule, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{1}{2}(x \log_e x)^{-1/2} \cdot \frac{d}{dx}(x \log_e x) \] ### Step 2: Differentiate \( x \log_e x \) To differentiate \( x \log_e x \), we use the product rule: \[ \frac{d}{dx}(x \log_e x) = \log_e x + x \cdot \frac{d}{dx}(\log_e x) \] The derivative of \( \log_e x \) is \( \frac{1}{x} \), so: \[ \frac{d}{dx}(x \log_e x) = \log_e x + x \cdot \frac{1}{x} = \log_e x + 1 \] ### Step 3: Substitute back into the derivative Now substituting back, we have: \[ \frac{dy}{dx} = \frac{1}{2}(x \log_e x)^{-1/2} \cdot (\log_e x + 1) \] ### Step 4: Evaluate at \( x = e^4 \) Now we will evaluate \( \frac{dy}{dx} \) at \( x = e^4 \): \[ \log_e(e^4) = 4 \] So, \[ x \log_e x = e^4 \cdot 4 = 4e^4 \] Thus, \[ \frac{dy}{dx} = \frac{1}{2}(4e^4)^{-1/2} \cdot (4 + 1) = \frac{1}{2}(2e^2)^{-1} \cdot 5 \] This simplifies to: \[ \frac{dy}{dx} = \frac{5}{2 \cdot 2e^2} = \frac{5}{4e^2} \] ### Step 5: Set \( k \) From the above, we have: \[ k = \frac{5}{4e^2} \] ### Step 6: Calculate \( 4e^3k \) Now we need to find \( 4e^3k \): \[ 4e^3k = 4e^3 \cdot \frac{5}{4e^2} = 5e \] ### Step 7: Substitute \( e \) Given \( e \approx 2.7 \): \[ 4e^3k = 5 \cdot 2.7 = 13.5 \] ### Final Answer Thus, the value of \( 4e^3k \) is: \[ \boxed{13.5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(1+log_(e)x) , then the value of (dy)/(dx) is equal to

If y = x^(1/x) , the value of (dy)/(dx) at x =e is equal to

If y=e^(x) then (dy)/(dx)

If y=e^(x)tanx+x.log_(e)x, then find (dy)/(dx)

If dy/dx=e^(-2y) and y=0 when x=5, then the value of x for y=3 is

The value of int_(4)^(5) e^(x) dx

If xlog_(e)y+ylog_(e)x=5 , then (dy)/(dx) is

Let y=f(x) satisfies (dy)/(dx)=(x+y)/(x) and f(e)=e then the value of f(1) is

If the value of the integral int_1^2e^(x^2)dx is alpha , then the value of int_e^(e^4)sqrt(lnx)dx is:

The value of int_(1)^(4) e^(sqrt(x))dx , is