Home
Class 12
MATHS
If the value of the integral I=int((pi)/...

If the value of the integral `I=int_((pi)/(4))^((pi)/(3))" max "(sinx, tanx)dx` is equal to ln k, then the value of `k^(2)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \max(\sin x, \tan x) \, dx \) and find the value of \( k^2 \) such that \( I = \ln k \), we will follow these steps: ### Step 1: Determine the maximum of \( \sin x \) and \( \tan x \) We need to find the maximum of \( \sin x \) and \( \tan x \) in the interval \( \left[\frac{\pi}{4}, \frac{\pi}{3}\right] \). - At \( x = \frac{\pi}{4} \): \[ \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}, \quad \tan\left(\frac{\pi}{4}\right) = 1 \] - At \( x = \frac{\pi}{3} \): \[ \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}, \quad \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \] Now, we check the values of \( \sin x \) and \( \tan x \) at some points in the interval to see which function is greater. - At \( x = \frac{\pi}{4} \), \( \tan x \) is greater. - At \( x = \frac{\pi}{3} \), \( \tan x \) is also greater. Since \( \tan x \) is increasing and \( \sin x \) is less than \( \tan x \) in this interval, we conclude: \[ \max(\sin x, \tan x) = \tan x \text{ for } x \in \left[\frac{\pi}{4}, \frac{\pi}{3}\right] \] ### Step 2: Rewrite the integral Now we can rewrite the integral: \[ I = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \tan x \, dx \] ### Step 3: Calculate the integral of \( \tan x \) The integral of \( \tan x \) is: \[ \int \tan x \, dx = -\ln(\cos x) + C \] Thus, we evaluate: \[ I = \left[-\ln(\cos x)\right]_{\frac{\pi}{4}}^{\frac{\pi}{3}} \] ### Step 4: Substitute the limits Now we substitute the limits: \[ I = -\ln(\cos(\frac{\pi}{3})) + \ln(\cos(\frac{\pi}{4})) \] Calculating the cosine values: \[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}, \quad \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] Thus: \[ I = -\ln\left(\frac{1}{2}\right) + \ln\left(\frac{1}{\sqrt{2}}\right) \] ### Step 5: Simplify the expression Using properties of logarithms: \[ I = \ln(2) - \ln(\sqrt{2}) = \ln(2) - \ln(2^{1/2}) = \ln(2) - \frac{1}{2} \ln(2) = \frac{1}{2} \ln(2) \] ### Step 6: Relate to \( \ln k \) We have: \[ I = \frac{1}{2} \ln(2) = \ln(k) \] This implies: \[ k = 2^{1/2} = \sqrt{2} \] ### Step 7: Find \( k^2 \) Now we compute \( k^2 \): \[ k^2 = (\sqrt{2})^2 = 2 \] ### Final Answer Thus, the value of \( k^2 \) is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

The value of the integral I=int_(0)^((pi)/(2))(cosx-sinx)/(10-x^(2)+(pix)/(2))dx is equal to

If the value of definite integral A=int_(0)^(10pi)[sinx]dx is equal to kpi , then the absolute value of k is equal to (where, [.] is the greatest integer function)

The value of integral int_0^pi xf(sinx)dx=

The value of the integral int_(-pi//3)^(pi//3) (x sinx)/(cos^(2)x)dx , is

The value of the integral int_(-3pi)^(3pi)|sin^(3)x|dx is equal to

The value fo the integral I=int_(0)^(oo)(dx)/((1+x^(2020))(1+x^(2))) is equal to kpi , then the value of 16k is equal to

The value of the definite integral I=int_(-1)^(1)ln((2-sin^(3)x)/(2+sin^(3)x))dx is equal to

The value of the integral int_(0)^(pi//2)log |tan x cot x |dx is

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :