Home
Class 12
MATHS
Given that a(4)+a(8)+a(12)+a(16)=224, th...

Given that `a_(4)+a_(8)+a_(12)+a_(16)=224`, the sum of the first nineteen terms of the arithmetic progression
`a_(1),a_(2),a_(3),….` is equal to

A

1540

B

1064

C

3125

D

1980

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(1)+a_(5)+a_(10)+a_(15)+a_(20)=225 , then the sum of the first 24 terms of the arithmetic progression a_(1), a_(2), a_(3)…….. is equal to

If a_(1)=3 and a_(n)=n+a_(n-1) , the sum of the first five term is

Let a_(1), a_(2),…. and b_(1),b_(2),…. be arithemetic progression such that a_(1)=25 , b_(1)=75 and a_(100)+b_(100)=100 , then the sum of first hundred term of the progression a_(1)+b_(1) , a_(2)+b_(2) ,…. is equal to

If a_(1)=1, a_(2)=1, and a_(n)=a_(n-1)+a_(n-2) for n ge 3, find the first 7 terms of the sequence.

If a_(1), a_(2), a_(3), a_(4), a_(5) are consecutive terms of an arithmetic progression with common difference 3, then the value of |(a_(3)^(2),a_(2),a_(1)),(a_(4)^(2),a_(3),a_(2)),(a_(5)^(2),a_(4),a_(3))| is

a_(1), a_(2),a_(3) in R - {0} and a_(1)+ a_(2)cos2x+ a_(3)sin^(2)x=0 " for all " x in R then (a) vectors veca=a_(1) hati+ a_(2) hatj + a_(3) hatk and vecb = 4hati + 2hatj + hatk are perpendicular to each other (b)vectors veca=a_(1) hati+ a_(2) hatj + a_(3) hatk and vecb = hati + hatj + 2hatk are parallel to each each other (c)if vector veca=a_(1) hati+ a_(2) hatj + a_(3) hatk is of length sqrt6 units, then on of the ordered trippplet (a_(1), a_(2),a_(3)) = (1, -1,-2) (d)if 2a_(1) + 3 a_(2) + 6 a_(3) = 26 , " then " |veca hati + a_(2) hatj + a_(3) hatk | is 2sqrt6

If a_(1), a_(2), a_(3) ,... are in AP such that a_(1) + a_(7) + a_(16) = 40 , then the sum of the first 15 terms of this AP is

Let A be nxxn matrix given by A=[(a_(11),a_(12),a_(13)……a_(1n)),(a_(21),a_(22),a_(23)…a_(2n)),(vdots, vdots, vdots),(a_(n1),a_(n2),a_(n3).a_("nn"))] Such that each horizontal row is arithmetic progression and each vertical column is a geometrical progression. It is known that each column in geometric progression have the same common ratio. Given that a_(24)=1,a_(42)=1/8 and a_(43)=3/16 Let d_(i) be the common difference of the elements in with row then sum_(i=1)^(n)d_(i) is

Statement -1: If a_(1),a_(2),a_(3), . . . . .,a_(n), . . . is an A.P. such that a_(1)+a_(4)+a_(7)+ . . . .+a_(16)=147 , then a_(1)+a_(6)+a_(11)+a_(16)=98 Statement -2: In an A.P., the sum of the terms equidistant from the beginning and the end is always same and is equal to the sum of first and last term.

Statement-1: If f:{a_(1),a_(2),a_(3),a_(4),a_(5)}to{a_(1),a_(2),a_(3),a_(4),a_(5)} , f is onto and f(x)nex for each x in{a_(1),a_(2),a_(3),a_(4),a_(5)} , is equal to 44. Statement-2: The number of derangement for n objects is n! sum_(r=0)^(n)((-1)^(r))/(r!) .