Home
Class 12
MATHS
If x in (0, (pi)/(2)), then show that co...

If `x in (0, (pi)/(2))`, then show that `cos^(-1) ((7)/(2) (1 + cos 2 x) + sqrt((sin^(2) x - 48 cos^(2) x)) sin x) = x - cos^(-1) (7 cos x)`

A

1

B

5

C

7

D

14

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If x in (0,pi/2), then show that cos^(-1)(7/2(1+cos2x)+sqrt((sin^2x-48cos^2x))sinx)=x-cos^(-1)(7cosx)

If x in (0,pi/2),t h e ns howt h a t d/(dx)cos^(-1){7/2(1+cos2x)+(sqrt(sin^2x-48cos^2x))sinx} =1+(7sinx)/sqrt(sin^2-48cos^2x)

(1 + sin 2x + cos 2x )/( cos x + sin x ) = 2 cos x

If sin^(-1)x in (0, (pi)/(2)) , then the value of tan((cos^(-1)(sin(cos^(-1)x))+sin^(-1)(cos(sin^(-1)x)))/(2)) is :

Solve |cos x - 2 sin 2x - cos 3 x|=1-2 sin x - cos 2x .

If x lt 0 , then prove that cos^(-1) x = pi - sin^(-1) sqrt(1 - x^(2))

Show that '(1-cos 2x + sin x)/(sin 2x + cos x) = tan x'

If cos2x+2 cos x=1 , then (sin^(2)x)(2-cos^(2)x) is equal to

Prove that sin (n+1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos x

int(sin^(3)x)/((1+cos^(2)x)sqrt(1+cos^(2)x+cos^(4))x)dx is equal to