Home
Class 12
MATHS
The value of int((tan^(-1)(sinx+1))cosx)...

The value of `int((tan^(-1)(sinx+1))cosx)/((3+2sinx-cos^(2)x))dx` is (where c is the constant of integration)

A

`tan^(-1)(sinx)+c`

B

`(tan^(-1)(sinx))^(2)+c`

C

`((tan^(-1)(sinx+1)^(2)))/(2)+c`

D

`((tan^(-1)(sinx))^(2))/(2)+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is the constant of integration)

The integral I=int((1)/(x.secx)-ln(x^(sinx))dx simplifies to (where, c is the constant of integration)

The integral I=int(e^((e^sinx+sinx)))cos x dx simpllifies to (where, c is the constant of integration)

The integral I=int[xe^(x^(2))(sinx^(2)+cosx^(2))]dx =f(x)+c , (where, c is the constant of integration). Then, f(x) can be

The value of the integral inte^(x^(2)+(1)/(x))(2x^(2)-(1)/(x)+1)dx is equal to (where C is the constant of integration)

The value of int(sinx +cosx)/(3+sin2x)dx , is

int(cos2x)/((sinx+cosx)^(2))dx is equal to

The value of the integral int("cosec"^(2)x-2019)/(cos^(2019)x)dx is equal to (where C is the constant of integration)

int(dx)/((sinx-2cosx)(2sinx+cosx))

The integral I=inte^(x)((1+sinx)/(1+cosx))dx=e^(x)f(x)+C (where, C is the constant of integration). Then, the range of y=f(x) (for all x in the domain of f(x) ) is