Home
Class 12
MATHS
The value of lim(xrarr(pi)/(3))(2-sqrt3s...

The value of `lim_(xrarr(pi)/(3))(2-sqrt3sinx-cosx)/((3x-pi)^(2))` is equal to the reciprocal of the number

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to evaluate: \[ \lim_{x \to \frac{\pi}{3}} \frac{2 - \sqrt{3} \sin x - \cos x}{(3x - \pi)^2} \] ### Step 1: Substitute \(x = \frac{\pi}{3}\) First, we substitute \(x = \frac{\pi}{3}\) into the numerator and denominator to check if we get an indeterminate form. \[ \text{Numerator: } 2 - \sqrt{3} \sin\left(\frac{\pi}{3}\right) - \cos\left(\frac{\pi}{3}\right) \] \[ = 2 - \sqrt{3} \cdot \frac{\sqrt{3}}{2} - \frac{1}{2} \] \[ = 2 - \frac{3}{2} - \frac{1}{2} = 2 - 2 = 0 \] \[ \text{Denominator: } (3 \cdot \frac{\pi}{3} - \pi)^2 = (0)^2 = 0 \] Since both the numerator and denominator approach 0, we have a \( \frac{0}{0} \) indeterminate form. We can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule We differentiate the numerator and denominator: **Numerator:** \[ \frac{d}{dx}(2 - \sqrt{3} \sin x - \cos x) = -\sqrt{3} \cos x + \sin x \] **Denominator:** \[ \frac{d}{dx}((3x - \pi)^2) = 2(3x - \pi)(3) = 6(3x - \pi) \] Now we can rewrite the limit: \[ \lim_{x \to \frac{\pi}{3}} \frac{-\sqrt{3} \cos x + \sin x}{6(3x - \pi)} \] ### Step 3: Substitute \(x = \frac{\pi}{3}\) again Substituting \(x = \frac{\pi}{3}\): \[ \text{Numerator: } -\sqrt{3} \cos\left(\frac{\pi}{3}\right) + \sin\left(\frac{\pi}{3}\right) \] \[ = -\sqrt{3} \cdot \frac{1}{2} + \frac{\sqrt{3}}{2} = -\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = 0 \] \[ \text{Denominator: } 6(3 \cdot \frac{\pi}{3} - \pi) = 6(0) = 0 \] Again, we have a \( \frac{0}{0} \) form, so we apply L'Hôpital's Rule again. ### Step 4: Differentiate again **Numerator:** \[ \frac{d}{dx}(-\sqrt{3} \cos x + \sin x) = \sqrt{3} \sin x + \cos x \] **Denominator:** \[ \frac{d}{dx}(6(3x - \pi)) = 18 \] Now we can rewrite the limit: \[ \lim_{x \to \frac{\pi}{3}} \frac{\sqrt{3} \sin x + \cos x}{18} \] ### Step 5: Substitute \(x = \frac{\pi}{3}\) again Substituting \(x = \frac{\pi}{3}\): \[ \text{Numerator: } \sqrt{3} \sin\left(\frac{\pi}{3}\right) + \cos\left(\frac{\pi}{3}\right) \] \[ = \sqrt{3} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2} = \frac{3}{2} + \frac{1}{2} = 2 \] Now substituting into the limit: \[ \lim_{x \to \frac{\pi}{3}} \frac{2}{18} = \frac{1}{9} \] ### Conclusion The value of the limit is: \[ \frac{1}{9} \] According to the problem statement, this is equal to the reciprocal of the number 9.
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto(pi)/(6)) (2-sqrt(3)cosx-sinx)/((6x-pi)^(2)).

The value of lim_(xrarr(5pi)/(4))(cot^(3)x-tanx)/(cos(x+(5pi)/(4))) is equal to

Evaluate: lim_(xrarr(pi)/(4))(sinx-cos x)/(x-(pi)/(4))= ?

The value of lim_(xrarr(pi)/(6))(2cos(x+(pi)/(3)))/((1-sqrt3tanx)) is equal to

lim_(xrarr(pi)/(2)) (1-sinx)tanx=

Evaluate, lim_(xto(pi//6)) (sqrt(3)sinx-cosx)/(x-pi/6)

The value of lim_(xrarr(pi)/(4)) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

The value of lim_(xrarr(3pi)/(4)) (1+root3(tanx))/(1-2cos^(2)x) is

The value of lim_(xrar2pi)(cos x-(cosx)^(cosx))/(1-cos x+ln(cosx)) is equal to

The value of lim_(xrarr0) (3sqrt(1+sinx )-3sqrt(1-sinx))/(x) , is