Home
Class 12
MATHS
The value of 2alpha+beta(0ltalpha, beta ...

The value of `2alpha+beta(0ltalpha, beta lt (pi)/(2))`, satisfying the equation `cos alpha cos beta cos (alpha+beta)=-(1)/(8)` is equal to

A

`(5)/(6)pi`

B

`(pi)/(2)`

C

`pi`

D

`(7pi)/(12)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If 0 lt alpha, beta lt pi and they satisfy cos alpha + cosbeta - cos(alpha + beta)=3/2

If sin alpha+sin beta=a and cos alpha-cos beta=b then tan((alpha-beta)/2) is equal to-

If cos(alpha+beta)=0 then sin(alpha+2beta)=

The number of ordered pairs ( alpha, beta ) ,where alpha, beta in (-pi, pi) satisfying cos(alpha-beta) =1 "and" cos(alpha+beta) = (1)/(sqrt2) is :

f(alpha,beta) = cos^2(alpha)+ cos^2(alpha+beta)- 2 cosalpha cosbeta cos(alpha+beta) is

If cos alpha=(2cos beta-1)/(2-cos beta) then tan (alpha/2) is equal to

If cosalpha+cosbeta=0=sinalpha+sinbeta , then prove that cos2alpha +cos2beta=-2cos(alpha +beta) .

If sin^(4) alpha + 4 cos^(4) beta + 2 = 4sqrt(2) sin alpha cos beta, alpha beta in [0, pi] , then cos (alpha + beta) - cos (alpha - beta) is equal to -sqrt(k) . The value of k is _________.

If 2 sin 2alpha= | tan beta+ cot beta |alpha,beta, in((pi)/(2),pi) , then the value of alpha+beta is

If 0ltalpha,betaltpi and cos alpha+cos beta -cos(alpha+beta)=(3)/(2) , then the value of sqrt3 sin alpha+cos alpha is equal to