Home
Class 12
MATHS
The value of lim(nrarroo)([x]+[2^(2)x]+[...

The value of `lim_(nrarroo)([x]+[2^(2)x]+[3^(2)x]+…+[n^(2)x])/(1^(2)+2^(2)+3^(2)+….+n^(2))` is equal to (where `[x]` represents the greatest integer part of x)

A

x

B

2x

C

`(x)/(2)`

D

`(x)/(6)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(x^(2)-[x^(2)])/(1+x^(2)-[x^(2)]) (where [.] represents the greatest integer part of x), then the range of f(x) is

If f(x)=(x^(2)-[x^(2)])/(x^(2)-[x^(2)-2]) (where, [.] represents the greatest integer part of x), then the range of f(x) is

lim_(x to 2^+) (([x]^(3))/(3) - [(x)/(3)]^(3)) is where [x] represents the integral part of x

The integral int_(-1/2)^(1/2) ([x]+1n((1+x)/(1-x)))dx is equal to (where [.] represents the greatest integer function)

The value of int_0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denotes the greatest integer function)

The value of lim_(nrarroo)(1^(2)-2^(2)+3^(2)-4^(2)+5^(2)….+(2n+1)^(2))/(n^(2)) is equal to

The value of int _(1)^(2)(x^([x^(2)])+[x^(2)]^(x)) d x is equal to where [.] denotes the greatest integer function

The value of lim_(xtooo){lim_(ntooo)([1^(2)(sinx)^(x)]+[2^(2)(sinx)^(x)]+……….+[n^(2)(sinx)^(x)])/(n^(3))} is (wehre [.] denotes the greatest integer function)

IF [x^(2) - 2x + a]=0 has no solution, then find the values of a (where [*] represents the greatest integer).

The value o lim_(xtooo)(1/(n^(3)))([1^(2)x+1^(2)]+[2^(2)x+2^(2)]+…..+[n^(2)x+n^(2)]) is where [.] denotes the greatest integer function.