Home
Class 12
MATHS
The maximum value of the expression sin ...

The maximum value of the expression `sin theta cos^(2)theta(AA theta in [0, pi])` is

A

`(2)/(3)`

B

`(2)/(sqrt3)`

C

`(2)/(3sqrt3)`

D

`(1)/(sqrt3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the expression \( f(\theta) = \sin \theta \cos^2 \theta \) for \( \theta \in [0, \pi] \), we will follow these steps: ### Step 1: Differentiate the function We start by differentiating \( f(\theta) \): \[ f'(\theta) = \frac{d}{d\theta} (\sin \theta \cos^2 \theta) \] Using the product rule \( (uv)' = u'v + uv' \), where \( u = \sin \theta \) and \( v = \cos^2 \theta \): - \( u' = \cos \theta \) - \( v' = 2\cos \theta (-\sin \theta) = -2\sin \theta \cos \theta \) Thus, \[ f'(\theta) = \cos \theta \cdot \cos^2 \theta + \sin \theta \cdot (-2\sin \theta \cos \theta) \] This simplifies to: \[ f'(\theta) = \cos^3 \theta - 2\sin^2 \theta \cos \theta \] ### Step 2: Set the derivative to zero To find the critical points, set \( f'(\theta) = 0 \): \[ \cos^3 \theta - 2\sin^2 \theta \cos \theta = 0 \] Factoring out \( \cos \theta \): \[ \cos \theta (\cos^2 \theta - 2\sin^2 \theta) = 0 \] This gives us two cases: 1. \( \cos \theta = 0 \) 2. \( \cos^2 \theta - 2\sin^2 \theta = 0 \) ### Step 3: Solve for critical points **Case 1:** \( \cos \theta = 0 \) This occurs at \( \theta = \frac{\pi}{2} \). **Case 2:** \( \cos^2 \theta - 2\sin^2 \theta = 0 \) Using the identity \( \cos^2 \theta = 1 - \sin^2 \theta \): \[ 1 - \sin^2 \theta - 2\sin^2 \theta = 0 \implies 1 - 3\sin^2 \theta = 0 \implies \sin^2 \theta = \frac{1}{3} \] Thus, \( \sin \theta = \pm \frac{1}{\sqrt{3}} \). Since \( \theta \) is in \( [0, \pi] \), we take \( \sin \theta = \frac{1}{\sqrt{3}} \). ### Step 4: Calculate corresponding \( \theta \) Using \( \sin \theta = \frac{1}{\sqrt{3}} \): \[ \theta = \arcsin\left(\frac{1}{\sqrt{3}}\right) \] ### Step 5: Evaluate \( f(\theta) \) at critical points 1. For \( \theta = \frac{\pi}{2} \): \[ f\left(\frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2}\right) \cos^2\left(\frac{\pi}{2}\right) = 1 \cdot 0 = 0 \] 2. For \( \sin \theta = \frac{1}{\sqrt{3}} \): \[ \cos^2 \theta = 1 - \sin^2 \theta = 1 - \frac{1}{3} = \frac{2}{3} \] Thus, \[ f\left(\theta\right) = \frac{1}{\sqrt{3}} \cdot \frac{2}{3} = \frac{2}{3\sqrt{3}} \] ### Step 6: Conclusion The maximum value of \( f(\theta) \) occurs at \( \theta \) where \( \sin \theta = \frac{1}{\sqrt{3}} \): \[ \text{Maximum value} = \frac{2}{3\sqrt{3}} \] ### Final Answer The maximum value of the expression \( \sin \theta \cos^2 \theta \) for \( \theta \in [0, \pi] \) is \( \frac{2}{3\sqrt{3}} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos theta + 5cos^2 theta) is

The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos theta + 5cos^2 theta) is

The maximum value of the expression 1/(sin^2theta+3sinthetacostheta+5cos^2theta)

The maximum value of the expression 1/(sin^2theta+3sinthetacostheta+5cos^2theta) is………

The value of the expression cos^6theta+sin^6theta+3sin^2thetacos^2theta=

The value of the expression sin^6 theta + cos^6 theta + 3 sin^2 theta. cos^2 theta equals

Find the maximum and minimum values of the following expressions (i) a cos theta - bsin theta (ii) 7 cos theta + 24 sin theta

Find the maximum and minimum values of the expression: a cos theta + b sin theta

Find the maximum value of 1+sin(pi/4+theta) + 2cos(pi/4-theta) .

The value of the expression ((sin3theta)/sin theta)^2-((cos3theta)/costheta)^2 when theta=7.5^@