Home
Class 12
MATHS
If the system of equations 3x+y+z=1, 6x+...

If the system of equations `3x+y+z=1, 6x+3y+2z=1` and `mux+lambday+3z=1` is inconsistent, then

A

`mu ne 9, lambda ne 5`

B

`mu ne 9, lambda=5`

C

`mu=9, lambda=5`

D

`mu=9, lambda ne 5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the conditions under which the given system of equations is inconsistent. The equations are: 1. \(3x + y + z = 1\) (Equation 1) 2. \(6x + 3y + 2z = 1\) (Equation 2) 3. \(\mu x + \lambda y + 3z = 1\) (Equation 3) ### Step 1: Write the system in matrix form We can express the system of equations in the form of a matrix: \[ \begin{bmatrix} 3 & 1 & 1 \\ 6 & 3 & 2 \\ \mu & \lambda & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \] ### Step 2: Determine the condition for inconsistency For the system of equations to be inconsistent, the determinant of the coefficient matrix must be zero (i.e., \(\Delta = 0\)) and the determinant of the augmented matrix must not be zero (i.e., \(\Delta_1 \neq 0\)). ### Step 3: Calculate the determinant \(\Delta\) The determinant \(\Delta\) is given by: \[ \Delta = \begin{vmatrix} 3 & 1 & 1 \\ 6 & 3 & 2 \\ \mu & \lambda & 3 \end{vmatrix} \] Calculating this determinant using the first row: \[ \Delta = 3 \begin{vmatrix} 3 & 2 \\ \lambda & 3 \end{vmatrix} - 1 \begin{vmatrix} 6 & 2 \\ \mu & 3 \end{vmatrix} + 1 \begin{vmatrix} 6 & 3 \\ \mu & \lambda \end{vmatrix} \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} 3 & 2 \\ \lambda & 3 \end{vmatrix} = 9 - 2\lambda\) 2. \(\begin{vmatrix} 6 & 2 \\ \mu & 3 \end{vmatrix} = 18 - 2\mu\) 3. \(\begin{vmatrix} 6 & 3 \\ \mu & \lambda \end{vmatrix} = 6\lambda - 3\mu\) Substituting back into the determinant: \[ \Delta = 3(9 - 2\lambda) - (18 - 2\mu) + (6\lambda - 3\mu) \] \[ = 27 - 6\lambda - 18 + 2\mu + 6\lambda - 3\mu \] \[ = 9 - \mu \] Setting \(\Delta = 0\) for inconsistency: \[ 9 - \mu = 0 \implies \mu = 9 \] ### Step 4: Calculate the determinant \(\Delta_1\) Now we need to check the condition for \(\Delta_1\): \[ \Delta_1 = \begin{vmatrix} 1 & 1 & 1 \\ 3 & 2 & 3 \\ \lambda & 3 & 3 \end{vmatrix} \] Calculating this determinant: \[ \Delta_1 = 1 \begin{vmatrix} 2 & 3 \\ 3 & 3 \end{vmatrix} - 1 \begin{vmatrix} 3 & 3 \\ \lambda & 3 \end{vmatrix} + 1 \begin{vmatrix} 3 & 2 \\ \lambda & 3 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} 2 & 3 \\ 3 & 3 \end{vmatrix} = 6 - 9 = -3\) 2. \(\begin{vmatrix} 3 & 3 \\ \lambda & 3 \end{vmatrix} = 9 - 3\lambda\) 3. \(\begin{vmatrix} 3 & 2 \\ \lambda & 3 \end{vmatrix} = 9 - 2\lambda\) Substituting back into \(\Delta_1\): \[ \Delta_1 = -3 - (9 - 3\lambda) + (9 - 2\lambda) \] \[ = -3 - 9 + 3\lambda + 9 - 2\lambda \] \[ = \lambda - 3 \] Setting \(\Delta_1 \neq 0\): \[ \lambda - 3 \neq 0 \implies \lambda \neq 3 \] ### Conclusion The system of equations is inconsistent if: - \(\mu = 9\) - \(\lambda \neq 3\) ### Final Answer Thus, the values that make the system inconsistent are: \(\mu = 9\) and \(\lambda \neq 3\).
Promotional Banner

Similar Questions

Explore conceptually related problems

The values of lambda for which the system of euations x+y+z=6x+2y+3z=10 x+2y+lambdaz=12 is inconsistent

The system of equations x+y+z=6, x +2y + 3z = 10, x+2y + lambda z = k is inconsistent if lambda =.........,k!=.........

The system of equations x+2y-4z=3,2x-3y+2z=5 and x -12y +16z =1 has

The system of equation 3x + 4y + 5z = mu x + 2y + 3z = 1 4x + 4y + 4z = delta is inconsistent, then ( delta,mu ) can be

If the system of equations, x+2y-3z=1,(k+3)z=3,(2k+1)x+z=0 is inconsistent, then the value of k is (A) -3 (B) 1/2 (C) 0 (D) 2

For the system of equations: x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

Examine the consistency of the system of equations x + y + z = 1 2x + 3y + 2z = 2 a x + a y + 2a z = 4

Solve the system of equations x+2y+3z=1,2x+3y+2z=2 and 3x+3y+4z=1 with the help of matrix inversion.

The values of lambda and b for which the equations x+y+z=3 , x+3y+2z=6 , and x+lambday+3z=b have

Consider the system of equation x+y+z=1, 2x+3y+2z=1, 2x+3y+(a^(2)-1)z=a+1 then (a) system has a unique solution for |a|=sqrt(3) (b) system is inconsistence for |a|=sqrt(3) (c) system is inconsistence for a=4 (d) system is inconsistence for a=3