Home
Class 12
MATHS
Let veca, vecb and vecc be three vectors...

Let `veca, vecb and vecc` be three vectors such that `|veca|=2, |vecb|=1 and |vecc|=3.` If the projection of `vecb` along `veca` is double of the projection of `vecc` along `veca and vecb, vecc` are perpendicular to each other, then the value of `(|veca-vecb+2vecc|^(2))/(2)` is equal to

A

41

B

14

C

`sqrt(14)`

D

20.5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the given information about the vectors and apply the relevant mathematical concepts. ### Given: - \(|\vec{a}| = 2\) - \(|\vec{b}| = 1\) - \(|\vec{c}| = 3\) - The projection of \(\vec{b}\) along \(\vec{a}\) is double the projection of \(\vec{c}\) along \(\vec{a}\). - Vectors \(\vec{b}\) and \(\vec{c}\) are perpendicular to each other. ### Step 1: Understanding Projections The projection of a vector \(\vec{b}\) along another vector \(\vec{a}\) is given by: \[ \text{Projection of } \vec{b} \text{ along } \vec{a} = \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|} \hat{a} \] where \(\hat{a} = \frac{\vec{a}}{|\vec{a}|}\). ### Step 2: Setting Up the Equation From the problem, we know: \[ \text{Projection of } \vec{b} \text{ along } \vec{a} = 2 \times \text{Projection of } \vec{c} \text{ along } \vec{a} \] This can be expressed as: \[ \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|} = 2 \times \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|} \] Since \(|\vec{a}| = 2\), we can simplify this to: \[ \vec{b} \cdot \vec{a} = 2 \cdot \frac{\vec{c} \cdot \vec{a}}{2} \Rightarrow \vec{b} \cdot \vec{a} = 2 \cdot \vec{c} \cdot \hat{a} \] ### Step 3: Using Perpendicularity Since \(\vec{b}\) and \(\vec{c}\) are perpendicular, we have: \[ \vec{b} \cdot \vec{c} = 0 \] ### Step 4: Expanding the Expression We need to find: \[ \frac{|\vec{a} - \vec{b} + 2\vec{c}|^2}{2} \] Using the formula for the magnitude of a vector: \[ |\vec{x}|^2 = \vec{x} \cdot \vec{x} \] we can express: \[ |\vec{a} - \vec{b} + 2\vec{c}|^2 = (\vec{a} - \vec{b} + 2\vec{c}) \cdot (\vec{a} - \vec{b} + 2\vec{c}) \] Expanding this: \[ = |\vec{a}|^2 + |\vec{b}|^2 + 4|\vec{c}|^2 - 2(\vec{a} \cdot \vec{b}) + 4(\vec{c} \cdot \vec{a}) - 4(\vec{b} \cdot \vec{c}) \] ### Step 5: Substituting Values Substituting the known values: - \(|\vec{a}|^2 = 2^2 = 4\) - \(|\vec{b}|^2 = 1^2 = 1\) - \(|\vec{c}|^2 = 3^2 = 9\) Thus: \[ |\vec{a} - \vec{b} + 2\vec{c}|^2 = 4 + 1 + 4 \times 9 - 2(\vec{a} \cdot \vec{b}) + 4(\vec{c} \cdot \vec{a}) - 0 \] \[ = 4 + 1 + 36 - 2(\vec{a} \cdot \vec{b}) + 4(\vec{c} \cdot \vec{a}) \] ### Step 6: Using the Earlier Result From the earlier equations, we know: \[ \vec{b} \cdot \vec{a} = 2 \cdot \vec{c} \cdot \hat{a} \] Substituting this back into our expression, we can simplify it further. ### Step 7: Final Calculation After substituting and simplifying, we find: \[ |\vec{a} - \vec{b} + 2\vec{c}|^2 = 41 \] Thus: \[ \frac{|\vec{a} - \vec{b} + 2\vec{c}|^2}{2} = \frac{41}{2} = 20.5 \] ### Final Answer The value is: \[ \boxed{20.5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

Let veca and vecb are vectors such that |veca|=2, |vecb|=3 and veca. vecb=4 . If vecc=(3veca xx vecb)-4vecb , then |vecc| is equal to

Let veca vecb and vecc be pairwise mutually perpendicular vectors, such that |veca|=1, |vecb|=2, |vecc| = 2 , the find the length of veca +vecb + vecc .

Let veca vecb and vecc be pairwise mutually perpendicular vectors, such that |veca|=1, |vecb|=2, |vecc| = 2 , the find the length of veca +vecb + vecc .

If veca, vecb, vecc are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to:

If veca,vecb and vecc are unit vectors such that veca + vecb + vecc= 0 , then prove that veca.vecb+vecb.vecc+vecc.veca=-3/2

If veca,vecb, vecc are three vectors such that |veca |= 5, |vecb| = 12 and | vecc|=13 and veca+vecb+vecc=0 then veca.vecb+vecb.vecc+vecc.veca is equal to

If veca,vecbandvecc are three vectors such that veca+vecb+vecc=0and|veca|=2,|vecb|=3and|vecc|=5 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca, vecb and vecc are three vectors, such that |veca|=2, |vecb|=3, |vecc|=4, veca. vecc=0, veca. vecb=0 and the angle between vecb and vecc is (pi)/(3) , then the value of |veca xx (2vecb - 3 vecc)| is equal to