Home
Class 12
MATHS
The value of a+b such that the inequalit...

The value of `a+b` such that the inequality `ale 5 cos theta+3cos (theta+(pi)/(3))+3le b ` holds true for all the real values of `theta` is (equality holds on both sides atleast once for real values of `theta`)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( a \leq 5 \cos \theta + 3 \cos \left( \theta + \frac{\pi}{3} \right) + 3 \leq b \) for all real values of \( \theta \), we need to determine the range of the expression \( f(\theta) = 5 \cos \theta + 3 \cos \left( \theta + \frac{\pi}{3} \right) + 3 \). ### Step 1: Expand the cosine term Using the cosine addition formula, we can expand \( \cos \left( \theta + \frac{\pi}{3} \right) \): \[ \cos \left( \theta + \frac{\pi}{3} \right) = \cos \theta \cos \frac{\pi}{3} - \sin \theta \sin \frac{\pi}{3} \] Substituting the values \( \cos \frac{\pi}{3} = \frac{1}{2} \) and \( \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} \), we get: \[ \cos \left( \theta + \frac{\pi}{3} \right) = \cos \theta \cdot \frac{1}{2} - \sin \theta \cdot \frac{\sqrt{3}}{2} \] Thus, we can rewrite \( f(\theta) \): \[ f(\theta) = 5 \cos \theta + 3 \left( \frac{1}{2} \cos \theta - \frac{\sqrt{3}}{2} \sin \theta \right) + 3 \] \[ = 5 \cos \theta + \frac{3}{2} \cos \theta - \frac{3\sqrt{3}}{2} \sin \theta + 3 \] \[ = \left( 5 + \frac{3}{2} \right) \cos \theta - \frac{3\sqrt{3}}{2} \sin \theta + 3 \] \[ = \frac{13}{2} \cos \theta - \frac{3\sqrt{3}}{2} \sin \theta + 3 \] ### Step 2: Identify the coefficients Now we can identify the coefficients: - \( A = \frac{13}{2} \) - \( B = -\frac{3\sqrt{3}}{2} \) ### Step 3: Calculate the range of the trigonometric expression The range of the expression \( A \cos \theta + B \sin \theta \) is given by: \[ \text{Range} = \left[-\sqrt{A^2 + B^2}, \sqrt{A^2 + B^2}\right] \] Calculating \( A^2 + B^2 \): \[ A^2 = \left(\frac{13}{2}\right)^2 = \frac{169}{4} \] \[ B^2 = \left(-\frac{3\sqrt{3}}{2}\right)^2 = \frac{27}{4} \] \[ A^2 + B^2 = \frac{169}{4} + \frac{27}{4} = \frac{196}{4} = 49 \] Thus, \[ \sqrt{A^2 + B^2} = \sqrt{49} = 7 \] The range of \( A \cos \theta + B \sin \theta \) is: \[ [-7, 7] \] ### Step 4: Adjust the range with the constant term Adding 3 to the entire range: \[ [-7 + 3, 7 + 3] = [-4, 10] \] ### Step 5: Identify values of \( a \) and \( b \) From the range \( [-4, 10] \), we have: - \( a = -4 \) - \( b = 10 \) ### Step 6: Calculate \( a + b \) \[ a + b = -4 + 10 = 6 \] ### Final Answer The value of \( a + b \) is \( \boxed{6} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum and minimum value of 5cos theta+3sin(theta+(pi)/(6)) for all real values of theta . .

Minimum value of cos2theta+costheta for all real value of theta is

For all real values of theta , choose the correct options.

The inequality 2^(sintheta)+2^(costheta)ge2^(1-1/sqrt(2)) ,holds for all real values of theta

If A = sin^2 theta+ cos^4 theta , then for all real values of theta

The maximum values of 3 costheta+5sin(theta-(pi)/(6)) for any real value of theta is:

If x=cos^2theta+sin^4theta then for all real values of theta

Show that the point (x, y) , where x=5 cos theta, y=-3+5 sin theta , lies on a circle for all values of theta

Find the values of p if it satisfy, cos theta = x + p/x, x in R for all real values of theta .

For all values of theta,3-costheta+cos(theta+(pi)/(3)) lie in the interval