Home
Class 12
MATHS
Let f(x)={{:(((1-cosx)/((2pi-x)^(2)))((s...

Let `f(x)={{:(((1-cosx)/((2pi-x)^(2)))((sin^(2)x)/(log(1+4pi^(2)-4pix+x^(2)))),:,xne2pi),(" "lambda,:,x=2pi):}`
is continuous at `x=2pi`, then the value of `lambda` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\lambda\) such that the function \(f(x)\) is continuous at \(x = 2\pi\), we need to evaluate the limit of \(f(x)\) as \(x\) approaches \(2\pi\) and set it equal to \(\lambda\). ### Step-by-Step Solution: 1. **Define the function**: \[ f(x) = \frac{(1 - \cos x)}{(2\pi - x)^2} \cdot \frac{\sin^2 x}{\log(1 + 4\pi^2 - 4\pi x + x^2)} \quad \text{for } x \neq 2\pi \] and \[ f(2\pi) = \lambda. \] 2. **Find the limit as \(x\) approaches \(2\pi\)**: We need to compute: \[ \lim_{x \to 2\pi} f(x). \] 3. **Substitute \(x = 2\pi + t\)**: As \(x\) approaches \(2\pi\), let \(t = x - 2\pi\), so \(x = 2\pi + t\) and \(t \to 0\) as \(x \to 2\pi\). 4. **Rewrite the limit**: The limit becomes: \[ \lim_{t \to 0} f(2\pi + t) = \lim_{t \to 0} \frac{(1 - \cos(2\pi + t))}{(2\pi - (2\pi + t))^2} \cdot \frac{\sin^2(2\pi + t)}{\log(1 + 4\pi^2 - 4\pi(2\pi + t) + (2\pi + t)^2)}. \] 5. **Simplify the terms**: - Since \(\cos(2\pi + t) = \cos t\) and \(\sin(2\pi + t) = \sin t\), we have: \[ 1 - \cos(2\pi + t) = 1 - \cos t. \] - The denominator becomes: \[ (2\pi - (2\pi + t))^2 = (-t)^2 = t^2. \] - The logarithm simplifies as follows: \[ 1 + 4\pi^2 - 4\pi(2\pi + t) + (2\pi + t)^2 = 1 + 4\pi^2 - 8\pi^2 - 4\pi t + 4\pi^2 + 4\pi t + t^2 = 1 + t^2. \] 6. **Combine the expressions**: Thus, we have: \[ f(2\pi + t) = \frac{(1 - \cos t)}{t^2} \cdot \frac{\sin^2 t}{\log(1 + t^2)}. \] 7. **Evaluate the limit**: - Using the limit \(\lim_{t \to 0} \frac{1 - \cos t}{t^2} = \frac{1}{2}\) and \(\lim_{t \to 0} \frac{\sin^2 t}{t^2} = 1\), we need to evaluate: \[ \lim_{t \to 0} \frac{\sin^2 t}{\log(1 + t^2)}. \] - This is of the form \(\frac{0}{0}\), so we apply L'Hôpital's rule: \[ \lim_{t \to 0} \frac{2\sin t \cos t}{\frac{2t}{1 + t^2}} = \lim_{t \to 0} \frac{\sin(2t)}{t} = 2. \] 8. **Final limit calculation**: Therefore, we find: \[ \lim_{t \to 0} f(2\pi + t) = \frac{1}{2} \cdot 1 \cdot 1 = \frac{1}{2}. \] 9. **Set the limit equal to \(\lambda\)**: Since \(f(x)\) is continuous at \(x = 2\pi\): \[ \lambda = \frac{1}{2}. \] ### Conclusion: The value of \(\lambda\) is \(\frac{1}{2}\).
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)={((1+cosx)/((pi-x)^(2)).(sin^(2)x)/(ln(1+pi^(2)-2pix+x^(2))),x ne pi),(lambda, x=pi):}

Let f(0,pi) to R be defined as f(x)={{:(,(1-sinx)/((pi-2x)^(2)).(In sin x)/((In(1+pi^(2)-4pix+4x^(2)))),x ne (pi)/(2)),(,k,x=(pi)/(2)):} If a continuous at x=(pi)/(2) , then the value of 8sqrt|k|,is

If f(x)={(((1-sin^(3)x))/(3cos^(2)x)",",x lt (pi)/(2)),(a",",x=(pi)/(2)),((b(1-sinx))/((pi-2x)^(2))",",x gt (pi)/(2)):} is continuous at x=(pi)/(2) , then the value of ((b)/(a))^(5//3) is

If f(x)={(1-sinx)/((pi-2x)^2)dot(logsinx)/((log(1+pi^2-4pix+4x^2))),x!=pi/2 ,\k \ at \x=pi/2 is continuous at x=pi/2,t h e nk= -1/(16) (b) -1/(32) (c) -1/(64) (d) -1/(28)

If function f(x) given by f(x)={{:(,(sin x)^(1//(pi-2x)),xne pi//2),(,lambda,x=pi//2):} is continous at x=(pi)/(2) then lambda =

If f(x)={((sin(cosx)-cosx)/((pi-2x)^2) ,, x!=pi/2),(k ,, x=pi/2):} is continuous at x=pi/2, then k is equal to

If f(x)={((1-sin((3x)/2))/(pi-3x) , x != pi/2),(lambda , x=pi/2)) be continuous at x=pi/3 , then value of lamda is (A) -1 (B) 1 (C) 0 (D) 2

If f(x)={(sin(cosx)-cosx)/((pi-2x)^2)\ \ \ ,\ \ \ x!=pi/2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \k\ \ \ \ ,\x=pi/2 is continuous at x=pi/2 , then k is equal to (a) 0 (b) 1/2 (c) 1 (d) -1

Let f(x)={{:(a,","x=(pi)/(2)),((sqrt(2x-pi))/(sqrt(9+sqrt(2x-pi))-b),","xgt(pi)/(2)):} . If f(x) is continuous at x=(pi)/(2) , then the value of (a^(2))/(5b) is

If f(x)={{:((1-sqrt2sinx)/(pi-4x)",",ifxne(pi)/(4)),(a",",if x=(pi)/(4)):} in continuous at (pi)/(4) , then a is equal to :