Home
Class 12
MATHS
If int(20)^(40)(sinx)/(sinx+sin(60-x))dx...

If `int_(20)^(40)(sinx)/(sinx+sin(60-x))dx=k`, then the value of `(k)/(4)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( k = \int_{20}^{40} \frac{\sin x}{\sin x + \sin(60 - x)} \, dx \), we can use a property of definite integrals. ### Step-by-step Solution: 1. **Identify the Integral and its Limits**: We have the integral: \[ k = \int_{20}^{40} \frac{\sin x}{\sin x + \sin(60 - x)} \, dx \] 2. **Use the Property of Integration**: We can use the property: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] Here, \( a = 20 \) and \( b = 40 \), so \( a + b = 60 \). Thus, we can write: \[ k = \int_{20}^{40} \frac{\sin(60 - x)}{\sin(60 - x) + \sin x} \, dx \] 3. **Set Up the New Integral**: Let’s denote the new integral as: \[ k = \int_{20}^{40} \frac{\sin(60 - x)}{\sin(60 - x) + \sin x} \, dx \] 4. **Add the Two Integrals**: Now, we have two expressions for \( k \): \[ k = \int_{20}^{40} \frac{\sin x}{\sin x + \sin(60 - x)} \, dx \] and \[ k = \int_{20}^{40} \frac{\sin(60 - x)}{\sin(60 - x) + \sin x} \, dx \] Adding these two integrals gives: \[ 2k = \int_{20}^{40} \left( \frac{\sin x}{\sin x + \sin(60 - x)} + \frac{\sin(60 - x)}{\sin(60 - x) + \sin x} \right) \, dx \] 5. **Simplify the Expression**: The sum inside the integral simplifies to: \[ \frac{\sin x + \sin(60 - x)}{\sin x + \sin(60 - x)} = 1 \] Therefore, we have: \[ 2k = \int_{20}^{40} 1 \, dx \] 6. **Evaluate the Integral**: Now, evaluate the integral: \[ \int_{20}^{40} 1 \, dx = [x]_{20}^{40} = 40 - 20 = 20 \] Thus, we have: \[ 2k = 20 \] 7. **Solve for \( k \)**: Dividing both sides by 2 gives: \[ k = 10 \] 8. **Find \( \frac{k}{4} \)**: Finally, we need to find \( \frac{k}{4} \): \[ \frac{k}{4} = \frac{10}{4} = 2.5 \] ### Final Answer: \[ \frac{k}{4} = 2.5 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a=int_(0)^(1)(cos(sinx))/(secx)dx, then the value of a^(2)+cos^(2)(sin1) is equal to

If int_(0)^(oo)(sinx)/(x)dx=k , then the value of int_(0)^(oo)(sin^(3)x)/(x)dx is equal to

If int_(0)^(40) (dx)/( 2x +1) = log k , then the value of k is

The value of int_(0)^(4pi)log_(e)|3sinx+3sqrt(3) cos x|dx then the value of I is equal to

If int_(0)^(4pi)ln|13sinx+3sqrt3cosx|dx=kpiln7 , then the value of k is

int sinx/sin(3x) dx=

Consider the integral I_(n)=int_(0)^((n)/(4))(sin(2n-1)x)/(sinx)dx , then the value of I_(20)-I_(19) is

int(sinx)/(1+sin x) dx

If the value of the integral I=int_((pi)/(4))^((pi)/(3))" max "(sinx, tanx)dx is equal to ln k, then the value of k^(2) is equal to

If the value of definite integral A=int_(0)^(10pi)[sinx]dx is equal to kpi , then the absolute value of k is equal to (where, [.] is the greatest integer function)