Home
Class 12
MATHS
For the equation (1-ix)/(1+ix)=sin.(pi)/...

For the equation `(1-ix)/(1+ix)=sin.(pi)/(7)-i cos.(pi)/(7)`, if `x=tan((kpi)/(28))`, then the value of k can be (where `i^(2)=-1`)

A

1

B

3

C

5

D

9

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If (3-tan^(2)""(pi)/(7))/(1-tan^(2)""(pi)/(7))=kcos""(pi)/(7) then the value of k is

cos (cos^-1 cos((8pi)/7) +tan^-1 tan(8pi/7)) has the value equal to -

Prove that cos ((2pi)/7)+ cos ((4pi)/7) + cos ((6pi)/7) = - 1/2

If (3-tan^2(pi/7))/(1-tan^2(pi/7))=kcos(pi/7) then the value of k is (a)1 (b) 2 (c) 3 (d) 4

Consider the equation sin^(-1)(x^(2)-6x+(17)/(2))+cos^(-1)k=(pi)/(2) , then :

3.Prove that (i) "cos((2pi)/7)*cos((4pi)/7)*cos((8pi)/7)=1/8

Prove that 4cos((2pi)/7).cos(pi/7)-1=2cos((2pi)/7) .

Prove that : cos(pi/7)cos((2pi)/7) cos((3pi)/7)=1/8

The value of sum_(k=1)^(13) (1)/(sin((pi)/(4) + ((k-1)pi)/(6)) sin ((pi)/(4)+ (kpi)/(6))) is equal to

If the integral I=int_(0)^(19pi)(dx)/(1+e^(cos^(3)x) has the value, (kpi)/(2), then (k)/(2) is equal to