Home
Class 12
MATHS
The value of lim(xrarroo)(e^(x+1)log(x^(...

The value of `lim_(xrarroo)(e^(x+1)log(x^(3)e^(-x)+1))/(sin^(3)(2x))` is equal to
(Use e = 2.7)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \frac{e^{x+1} \log(x^3 e^{-x} + 1)}{\sin^3(2x)} \), we will analyze the behavior of the numerator and denominator as \( x \) approaches infinity. ### Step-by-Step Solution: 1. **Analyze the Numerator**: The numerator is \( e^{x+1} \log(x^3 e^{-x} + 1) \). - As \( x \to \infty \), \( e^{x+1} \) grows exponentially. - Now, consider \( \log(x^3 e^{-x} + 1) \): \[ x^3 e^{-x} = \frac{x^3}{e^x} \] As \( x \to \infty \), \( e^x \) grows much faster than \( x^3 \), thus \( \frac{x^3}{e^x} \to 0 \). Therefore, \( x^3 e^{-x} + 1 \to 1 \) and \( \log(x^3 e^{-x} + 1) \to \log(1) = 0 \). 2. **Combine the Results**: - The numerator \( e^{x+1} \log(x^3 e^{-x} + 1) \) behaves like \( e^{x+1} \cdot 0 = 0 \) as \( x \to \infty \). 3. **Analyze the Denominator**: The denominator is \( \sin^3(2x) \). - The sine function oscillates between -1 and 1 for all real \( x \). Thus, \( \sin^3(2x) \) will oscillate between -1 and 1, and it will not approach 0 as \( x \to \infty \). 4. **Form of the Limit**: Now we have: \[ \text{Numerator} \to 0 \quad \text{and} \quad \text{Denominator} \text{ oscillates between -1 and 1}. \] Therefore, we have a limit of the form \( \frac{0}{\text{bounded}} \). 5. **Evaluate the Limit**: Since the numerator approaches 0 while the denominator remains bounded (not approaching 0), we conclude: \[ \lim_{x \to \infty} \frac{0}{\text{bounded}} = 0. \] ### Final Answer: Thus, the value of the limit is: \[ \boxed{0}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarroo) x^(1//x) equals

The value of lim_(xrarroo) ((x+3)/(x-1))^(x+1) is

The value of : lim_(xrarroo)("log" x)/(x) is:

The value of lim_(xrarroo) (e^(sqrt(x^(4)+))-e^((x^(2)+1))) is

The value of lim_(xrarr2)(e^(3x-6)-1)/(sin(2-x)) , is

The value of lim_(xrarr3) ((x^(3)+27)log_(e)(x-2))/(x^(2)-9) is

The value of lim_(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

lim_(xrarroo) [x-log_(e)((e^(x)+e^(-x))/(2))]=

The value of lim_(xrarroo)[(e)/((1+(1)/(x))^(x))]^(x) is equal to

The value of lim_(xrarr 0) (e^x+log (1+x)-(1-x)^-2)/(x^2) is equal to