Home
Class 12
MATHS
The value of int(-pi)^(pi)(sqrt2cosx)/(1...

The value of `int_(-pi)^(pi)(sqrt2cosx)/(1+e^(x))dx` is equal to

A

`(pi)/(2)`

B

`pi`

C

0

D

`2pi`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(-pi//2)^(pi//2) sqrt((1-cos 2x)/( 2)) dx is equal to

if f(x)=|[x,cosx,e^(x^2)],[sinx,x^2,secx],[tanx,1,2]| then the value of int_((-pi)/2)^(pi/2) f(x)dx is equal to

Evaluate : int_(-pi/2)^(pi/2)(cosx)/(1+e^x)dx

The value of int_(-pi)^(pi) sinx f(cosx)dx is

int_(-pi//2)^(pi//2)(1)/(e^(sinx)+1)dx is equal to

The value of int_(0)^(2 pi)(sin^(2)x-cos^(4)x)dx is equal to pi/k then k

Evaluate: int_(-pi//2)^(pi//2)(cosx)/(1+e^x)dx

Evaluate: int_(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

The value of int_(0)^(pi//2)(cosxdx)/(1+cosx+sinx) is equal to

The value of int_(-2pi)^(5pi) cot^(-1)(tan x) dx is equal to