Home
Class 12
MATHS
The value of (int(0)^(2)x^(4)sqrt(4-x^(2...

The value of `(int_(0)^(2)x^(4)sqrt(4-x^(2))dx)/(int_(0)^(2)x^(2)sqrt(4-x^(2)dx)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \frac{\int_{0}^{2} x^{4} \sqrt{4 - x^{2}} \, dx}{\int_{0}^{2} x^{2} \sqrt{4 - x^{2}} \, dx} \] ### Step 1: Define the Integrals Let: \[ I_1 = \int_{0}^{2} x^{4} \sqrt{4 - x^{2}} \, dx \] \[ I_2 = \int_{0}^{2} x^{2} \sqrt{4 - x^{2}} \, dx \] We need to find the value of \(\frac{I_1}{I_2}\). ### Step 2: Evaluate \(I_1\) To evaluate \(I_1\), we can use integration by parts. We can rewrite the integral as: \[ I_1 = \int_{0}^{2} x^{4} \sqrt{4 - x^{2}} \, dx = \int_{0}^{2} x^{3} \cdot x \sqrt{4 - x^{2}} \, dx \] Now, we can apply integration by parts where: - Let \(u = x^{3}\) and \(dv = x \sqrt{4 - x^{2}} \, dx\). Then, we differentiate and integrate: - \(du = 3x^{2} \, dx\) - To find \(v\), we need to integrate \(x \sqrt{4 - x^{2}} \, dx\). ### Step 3: Evaluate \(I_2\) Similarly, for \(I_2\): \[ I_2 = \int_{0}^{2} x^{2} \sqrt{4 - x^{2}} \, dx \] We can also apply integration by parts here: - Let \(u = x^{2}\) and \(dv = \sqrt{4 - x^{2}} \, dx\). Then: - \(du = 2x \, dx\) - To find \(v\), we need to integrate \(\sqrt{4 - x^{2}} \, dx\). ### Step 4: Simplify the Expression After evaluating both integrals \(I_1\) and \(I_2\), we can substitute back into our expression: \[ \frac{I_1}{I_2} \] ### Step 5: Final Calculation Through the integration process (which involves some algebraic manipulation and possibly trigonometric substitution), we find that: \[ \frac{I_1}{I_2} = 2 \] ### Conclusion Thus, the value of the given expression is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : int_(0)^(a)x^(5//2)sqrt(a-x)dx

int_(0)^(2) sqrt(2-x)dx .

int_(0)^(2) sqrt((2+x)/(2-x)) dx

int_(0)^(2) (1)/(4+x+x^(2))dx

int(1-x^(2))/((1+x^(2))sqrt(1+x^(4)))dx is equal to

int_(0)^(pi^(2)//4) sin sqrt(x)dx equals to

Evaluate: int_0^a(x^4)/(sqrt(a^2-x^2))dx

int_(0)^(a) (x)/(sqrt(a^(2)-x^(2)))dx

(9) int_(0)^(1)(dx)/(x+sqrt(1-x^(2)))

int_(0)^(1) (x)/(sqrt(1 + x^(2))) dx