Home
Class 12
PHYSICS
A particular semiconductor in equilibriu...

A particular semiconductor in equilibrium has `1xx10^(16)cm^(-3)` donor atoms, `1.1xx10^(17)cm^(-3)` acceptor atoms. If the intrinsic carrier density `(n_(i))` of the semiconductor is `10^(12)cm^(-3)`, then the electron density in it will be

A

`10^(16) cm^(-3)`

B

`10^(12) cm^(-3)`

C

`1.1xx10^(17) cm^(-3)`

D

`10^(7) cm^(-3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the electron density in the given semiconductor, we can use the formula for the electron density \( n_0 \) in a semiconductor with donor and acceptor atoms: \[ n_0 = \frac{N_D - N_A}{2} + \sqrt{\left(\frac{N_D - N_A}{2}\right)^2 + n_i^2} \] Where: - \( N_D \) = concentration of donor atoms - \( N_A \) = concentration of acceptor atoms - \( n_i \) = intrinsic carrier density ### Step-by-Step Solution: 1. **Identify the given values:** - \( N_D = 1 \times 10^{16} \, \text{cm}^{-3} \) - \( N_A = 1.1 \times 10^{17} \, \text{cm}^{-3} \) - \( n_i = 1 \times 10^{12} \, \text{cm}^{-3} \) 2. **Calculate \( N_D - N_A \):** \[ N_D - N_A = 1 \times 10^{16} - 1.1 \times 10^{17} = -1.0 \times 10^{17} + 1.0 \times 10^{16} = -1.0 \times 10^{17} + 0.1 \times 10^{17} = -1.0 \times 10^{17} \] 3. **Calculate \( \frac{N_D - N_A}{2} \):** \[ \frac{N_D - N_A}{2} = \frac{-1.0 \times 10^{17}}{2} = -0.5 \times 10^{17} = -5.0 \times 10^{16} \] 4. **Calculate \( \left(\frac{N_D - N_A}{2}\right)^2 \):** \[ \left(-5.0 \times 10^{16}\right)^2 = 25.0 \times 10^{32} = 2.5 \times 10^{33} \] 5. **Calculate \( n_i^2 \):** \[ n_i^2 = (1 \times 10^{12})^2 = 1 \times 10^{24} \] 6. **Calculate the expression under the square root:** \[ \left(\frac{N_D - N_A}{2}\right)^2 + n_i^2 = 2.5 \times 10^{33} + 1 \times 10^{24} \approx 2.5 \times 10^{33} \quad (\text{since } 2.5 \times 10^{33} \text{ is much larger than } 1 \times 10^{24}) \] 7. **Take the square root:** \[ \sqrt{2.5 \times 10^{33}} = 5.0 \times 10^{16} \sqrt{2.5} \approx 7.5 \times 10^{16} \] 8. **Combine the results to find \( n_0 \):** \[ n_0 = -5.0 \times 10^{16} + 7.5 \times 10^{16} = 2.5 \times 10^{16} \] ### Final Result: The electron density \( n_0 \) in the semiconductor is approximately \( 2.5 \times 10^{16} \, \text{cm}^{-3} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

A silicon specimen is made into a P -type semiconductor by dopping, on an average, one helium atoms per 5xx10^(7) silicon atoms. If the number density of atoms in the silicon specimen is 5xx10^(28) at om//m^(3) then the number of acceptor atoms in silicon per cubic centimeter will be

A silicon specimen is made into p - type semiconductor by doping, on an average, one indium atom per 5xx10^(7) sillicon atoms. If the number density of atoms in the silicon per cubic centimetre is 5xx10^(28) Then the number of acceptor atoms in silicon will be.

A p-type semiconductor is made from a silicon specimen by doping on an average one indium atom per 5xx10^(7) silicon atoms .If the number density of atoms in the silicon specimen is 5xx10^(26) atom / m^(3) , then the number of acceptor atoms in silicon per cubic centimetre will be

The density of an electron-hole pair in a pure germanium is 3xx 10^(16) m^(-3) at room temperature. On doping with aluminium, the hole density increases to 4.5 xx 10^(22) m^(-3) . Now the electron density ( in m^(-3)) in doped germanium will be

A current of 10 A is maintained in a conductor of cross-section 1 cm^(2) . If the free electron density in the conductor is 9 xx 10^(28) m^(-3) , then drift velocity of free electrons is

A crystal of intrinsic silicon at room temperature has a carrier concentration of 1.6xx10^(16)m^(-3) . If the donor concentration level is 4.8xx10^(20) m^(-3) , then the concentration of holes in the semiconductor is

Density of water is ...… ("10 g cm"^(-3)//"1 g cm"^(-3)) .

The density of an ideal gas is 1.25xx10^(-3)g cm^(-3) at STP. Calculate the molecular weight of the gas.

A current of 10 A is mainatained in a conductor of cross - section 1 cm^(2) . If the free electron density in the conductor is 9 xx 10^(28) m^(-3) , then drift velocity of free electrons is .

The mass of an electron is 9.1xx10^(-31) kg and velocity is 2.99xx10^(10) cm s^(-1) . The wavelenth of the electron will be