Home
Class 12
MATHS
Let the vertices of a triangle are A=(-3...

Let the vertices of a triangle are `A=(-3+2sin theta, 4+2 cos theta),` and `B=(-3+2cos theta, 4-2 cos theta)`, then the distance between the centroid and the circumcentre of `DeltaABC` is

A

`(2)/(3)` units

B

`(3)/(2)` units

C

`(1)/(2)` units

D

`(1)/(3)` units

Text Solution

AI Generated Solution

The correct Answer is:
To find the distance between the centroid and the circumcenter of triangle \( ABC \) with vertices \( A \) and \( B \) given in the problem, we will follow these steps: ### Step 1: Identify the vertices of the triangle The vertices of the triangle are given as: - \( A = (-3 + 2\sin\theta, 4 + 2\cos\theta) \) - \( B = (-3 + 2\cos\theta, 4 - 2\cos\theta) \) We need to find the coordinates of the third vertex \( C \). However, since \( C \) is not provided, we will assume it lies on a circle centered at \( (-3, 4) \) with a radius of 2. ### Step 2: Find the circumcenter of triangle \( ABC \) The circumcenter of a triangle inscribed in a circle is the center of the circle. Therefore, the circumcenter \( O \) is: \[ O = (-3, 4) \] ### Step 3: Find the centroid of triangle \( ABC \) The centroid \( G \) of a triangle with vertices \( A(x_1, y_1) \), \( B(x_2, y_2) \), and \( C(x_3, y_3) \) is given by: \[ G = \left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right) \] Substituting the coordinates of \( A \) and \( B \): \[ G = \left( \frac{(-3 + 2\sin\theta) + (-3 + 2\cos\theta) + x_3}{3}, \frac{(4 + 2\cos\theta) + (4 - 2\cos\theta) + y_3}{3} \right) \] Simplifying: \[ G = \left( \frac{-6 + 2\sin\theta + 2\cos\theta + x_3}{3}, \frac{8 + y_3}{3} \right) \] ### Step 4: Find the distance between the centroid \( G \) and circumcenter \( O \) The distance \( d \) between two points \( (x_1, y_1) \) and \( (x_2, y_2) \) is given by: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] Substituting \( O = (-3, 4) \) and \( G \): \[ d = \sqrt{\left( \frac{-6 + 2\sin\theta + 2\cos\theta + x_3 + 3}{3} \right)^2 + \left( \frac{8 + y_3 - 12}{3} \right)^2} \] This simplifies to: \[ d = \sqrt{\left( \frac{-3 + 2\sin\theta + 2\cos\theta + x_3}{3} \right)^2 + \left( \frac{y_3 - 4}{3} \right)^2} \] ### Step 5: Use the property of the circumradius and centroid Since triangle \( ABC \) is inscribed in a circle of radius 2, we can use the properties of triangles to find the distance between the centroid and circumcenter. The distance between the centroid \( G \) and circumcenter \( O \) can be expressed as: \[ d = \frac{R}{\sqrt{3}} \quad \text{where } R = 2 \] Thus: \[ d = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3} \] ### Final Answer The distance between the centroid and the circumcenter of triangle \( ABC \) is: \[ \frac{2\sqrt{3}}{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = 3 cos theta - 2 cos^3 theta,y = 3 sin theta - 2 sin^3 theta , then dy/dx is

The area of the triangle with vertices (a, 0), (a cos theta, b sin theta), (a cos theta, -b sin theta) is

Prove that : (sin 5theta + sin 3theta)/(cos 5theta + cos 3theta) = tan 4theta

(2 sin theta*cos theta - cos theta)/(1-sin theta+sin^2 theta-cos^2 theta) = cot theta

Find the A.M. between: ( cos theta + sin theta )^(2) and ( cos theta - sin theta)^(2)

Evaluate : int (2 sin 2 theta- cos theta)/(6 - cos^(2) theta- 4 sin theta) d theta

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

cos ^(2) 2 theta - sin ^(2) theta = cos theta . cos 3 theta.

If 3 sin theta + 4 cos theta=5 , then find the value of 4 sin theta-3 cos theta .

2(sin^(6) theta + cos^(6)theta) - 3(sin^(4)theta + cos^(4)theta)+ 1 = 0