Home
Class 12
MATHS
The value of lim(xrarrpi)(sin(2picos^(2)...

The value of `lim_(xrarrpi)(sin(2picos^(2)x))/(tan(pisec^(2)x))`. Is equal to

A

1

B

2

C

`-2`

D

0

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarrpi)(tan(picos^(2)x))/(sin^(2)(2x)) is equal to

lim_(xrarr0) (sin(picos^2x))/(x^2) equals

The value of lim_(xrarr0)(9ln (2-cos 25x))/(5ln^(2)(sin 3x+1)) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((2)/(x)))/(sqrt(16x^(2)-x+1)) is equal to

The value of lim_(xrarr0) (x^2sin((1)/(x)))/(sinx) , is

Evaluate lim_(xto 0)(sin (picos^(2)x))/(x^(2))

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

The value of lim_(x to 0) ("sin" (pi cos^(2) x))/(x^(2)) equals

lim_(xto0) (sin(picos^(2)x))/(x^(2)) is equal to

lim_(xrarrpi//2)(cos((pi)/(2)sin^(2)x))/(cot((pi)/(2)sin^(2)x)) equals