Home
Class 12
MATHS
The integral I=inte^(x)((1+sinx)/(1+cosx...

The integral `I=inte^(x)((1+sinx)/(1+cosx))dx=e^(x)f(x)+C`
(where, C is the constant of integration).
Then, the range of `y=f(x)` (for all x in the domain of `f(x)`) is

A

`[-1, 1]`

B

`(-oo, oo)`

C

`(-1, 1)`

D

`[0, oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int e^x \frac{1 + \sin x}{1 + \cos x} \, dx \) and find the range of \( y = f(x) \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int e^x \frac{1 + \sin x}{1 + \cos x} \, dx \] ### Step 2: Simplify the Fraction We can rewrite \( \frac{1 + \sin x}{1 + \cos x} \) using trigonometric identities. We know: \[ \sin x = 2 \tan \frac{x}{2} \cdot \frac{1}{1 + \tan^2 \frac{x}{2}} \quad \text{and} \quad \cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \] Thus, we can express the integral in terms of \( \tan \frac{x}{2} \). ### Step 3: Substitute and Simplify Substituting these identities into the integral, we have: \[ I = \int e^x \frac{1 + 2 \tan \frac{x}{2}}{1 + \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}} \, dx \] After simplification, we will find that: \[ I = \int e^x \left( \tan \frac{x}{2} + \text{constant} \right) \, dx \] ### Step 4: Integrate Using integration by parts or recognizing the standard integral form, we can derive: \[ I = e^x f(x) + C \] where \( f(x) = \tan \frac{x}{2} \). ### Step 5: Determine the Range of \( f(x) \) The function \( f(x) = \tan \frac{x}{2} \) can take any real value. As \( x \) approaches \( 90^\circ \) (or \( \frac{\pi}{2} \) radians), \( f(x) \) approaches \( +\infty \), and as \( x \) approaches \( -90^\circ \) (or \( -\frac{\pi}{2} \) radians), \( f(x) \) approaches \( -\infty \). ### Conclusion Thus, the range of \( y = f(x) \) is: \[ (-\infty, +\infty) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The integral I=int[xe^(x^(2))(sinx^(2)+cosx^(2))]dx =f(x)+c , (where, c is the constant of integration). Then, f(x) can be

The integral I=int((1)/(x.secx)-ln(x^(sinx))dx simplifies to (where, c is the constant of integration)

The integral I=int(e^((e^sinx+sinx)))cos x dx simpllifies to (where, c is the constant of integration)

If int(dx)/(x^(2)+x)=ln|f(x)|+C (where C is the constant of integration), then the range of y=f(x), AA x in R-{-1, 0} is

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

If int(dx)/(sqrt(e^(x)-1))=2tan^(-1)(f(x))+C , (where x gt0 and C is the constant of integration ) then the range of f(x) is

The integral I=int2^((2^(x)+x))dx=lambda. (2^(2^(x)))+C (where, C is the constant of integration). Then the value of sqrtlambda is equal to

Let inte^(x).x^(2)dx=f(x)e^(x)+C (where, C is the constant of integration). The range of f(x) as x in R is [a, oo) . The value of (a)/(4) is

If I=int(tan^(-1)(e^(x)))/(e^(x)+e^(-x))dx=([tan^(-1)(f(x))]^(2))/(2)+C (where C is the constant of integration), then the range of y=f(x) AA x in R is

If B=int(1)/(e^(x)+1)dx=-f(x)+C , where C is the constant of integration and e^(f(0))=2 , then the value of e^(f(-1)) is