Home
Class 12
MATHS
Let |veca|=3, |vecb|=4, |vecc|=5 and vec...

Let `|veca|=3, |vecb|=4, |vecc|=5` and `vecaxx(vecaxxvecc)+4vecb=0`, then the value of `|veca xx vecc|^(2)` equals to

A

`(9)/(256)`

B

`(16)/(3)`

C

`(256)/(9)`

D

`(3)/(16)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(|\vec{a} \times \vec{c}|^2\) given the conditions. Let's go through the steps systematically. ### Step 1: Understand the given information We know: - \(|\vec{a}| = 3\) - \(|\vec{b}| = 4\) - \(|\vec{c}| = 5\) - The equation \(\vec{a} \times (\vec{a} \times \vec{c}) + 4\vec{b} = 0\) ### Step 2: Rearranging the equation From the given equation, we can rearrange it to isolate the cross product: \[ \vec{a} \times (\vec{a} \times \vec{c}) = -4\vec{b} \] ### Step 3: Use the vector triple product identity Using the vector triple product identity: \[ \vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w})\vec{v} - (\vec{u} \cdot \vec{v})\vec{w} \] we can apply it to our equation: \[ \vec{a} \times (\vec{a} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{a} - (\vec{a} \cdot \vec{a})\vec{c} \] Substituting this into our rearranged equation gives: \[ (\vec{a} \cdot \vec{c})\vec{a} - |\vec{a}|^2\vec{c} = -4\vec{b} \] ### Step 4: Substitute known magnitudes Substituting \(|\vec{a}|^2 = 3^2 = 9\): \[ (\vec{a} \cdot \vec{c})\vec{a} - 9\vec{c} = -4\vec{b} \] ### Step 5: Take dot products Taking the dot product with \(\vec{a}\): \[ (\vec{a} \cdot \vec{c})|\vec{a}|^2 - 9(\vec{a} \cdot \vec{c}) = -4(\vec{a} \cdot \vec{b}) \] This simplifies to: \[ (\vec{a} \cdot \vec{c})(9 - 9) = -4(\vec{a} \cdot \vec{b}) \] Thus, we have: \[ 0 = -4(\vec{a} \cdot \vec{b}) \] This implies that \(\vec{a} \cdot \vec{b} = 0\), meaning \(\vec{a}\) and \(\vec{b}\) are perpendicular. ### Step 6: Finding \(\cos \theta\) Now, we need to find \(\cos \theta\) where \(\theta\) is the angle between \(\vec{a}\) and \(\vec{c}\): \[ \vec{a} \cdot \vec{c} = |\vec{a}||\vec{c}|\cos \theta = 3 \cdot 5 \cdot \cos \theta = 15 \cos \theta \] ### Step 7: Substitute back into the equation Substituting back into our earlier equation: \[ 15 \cos \theta \vec{a} - 9\vec{c} = -4\vec{b} \] ### Step 8: Finding \(|\vec{a} \times \vec{c}|^2\) Now we can find \(|\vec{a} \times \vec{c}|^2\): \[ |\vec{a} \times \vec{c}|^2 = |\vec{a}|^2 |\vec{c}|^2 \sin^2 \theta \] Using \(|\vec{a}| = 3\) and \(|\vec{c}| = 5\): \[ |\vec{a} \times \vec{c}|^2 = 3^2 \cdot 5^2 \cdot \sin^2 \theta = 9 \cdot 25 \cdot \sin^2 \theta = 225 \sin^2 \theta \] ### Step 9: Finding \(\sin^2 \theta\) Since \(\sin^2 \theta = 1 - \cos^2 \theta\), we need to find \(\cos^2 \theta\). We already have: \[ \cos^2 \theta = \frac{1769}{2025} \] Thus, \[ \sin^2 \theta = 1 - \frac{1769}{2025} = \frac{2025 - 1769}{2025} = \frac{256}{2025} \] ### Step 10: Final calculation Substituting \(\sin^2 \theta\) back into the equation for \(|\vec{a} \times \vec{c}|^2\): \[ |\vec{a} \times \vec{c}|^2 = 225 \cdot \frac{256}{2025} = \frac{57600}{2025} \] ### Conclusion Thus, the final value of \(|\vec{a} \times \vec{c}|^2\) is: \[ \frac{256}{9} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If |veca|=3,|vecb|= 5 and |vecc|=4 and veca+ vecb + vecc =vec0 then the value of ( veca. vecb + vecb.vecc) is equal tio

If |veca|=3, |vecb|=1, |vecc|=4 and veca + vecb + vecc= vec0 , find the value of veca.vecb+ vecb.vecc + vecc.veca .

If |vecc|=2 , |veca|=|vecb|=1 and vecaxx(vecaxxvecc)+vecb=vec0 then the acute angle between veca and vecc is (A) pi/6 (B) pi/4 (C) pi/3 (D) (2pi)/3

If veca, vecb and vecc are three vectors, such that |veca|=2, |vecb|=3, |vecc|=4, veca. vecc=0, veca. vecb=0 and the angle between vecb and vecc is (pi)/(3) , then the value of |veca xx (2vecb - 3 vecc)| is equal to

If veca,vecb, vecc are three vectors such that |veca |= 5, |vecb| = 12 and | vecc|=13 and veca+vecb+vecc=0 then veca.vecb+vecb.vecc+vecc.veca is equal to

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to

if veca=hati+hatj+2hatk, vecb=hati+2hatj+2hatk and |vecc|=1 Such that [veca xx vecb vecb xx vecc vecc xx veca] has maximum value, then the value of |(veca xx vecb) xx vecc|^(2) is (a) 0 (b) 1 (c) 4/3 (d) none of these

If |veca|=2, |vecb|=5 and veca*vecb=0 , then veca xx (vecaxx(vecaxx(vecaxx(vecaxx(veca xx vecb))))) is equal to :

If |veca|=1,|vecb|=2,|vecc|=3and veca+vecb+vecc=0 the show that veca.vecb+vecb.vecc+vecc.veca=- 7

Let veca, vecb and vecc be three vectors such that |veca|=2, |vecb|=1 and |vecc|=3. If the projection of vecb along veca is double of the projection of vecc along veca and vecb, vecc are perpendicular to each other, then the value of (|veca-vecb+2vecc|^(2))/(2) is equal to