Home
Class 12
MATHS
The value of the definite integral I=int...

The value of the definite integral `I=int_(-1)^(1)ln((2-sin^(3)x)/(2+sin^(3)x))dx` is equal to

A

ln 4

B

ln 2

C

0

D

`ln((1)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \[ I = \int_{-1}^{1} \ln\left(\frac{2 - \sin^3 x}{2 + \sin^3 x}\right) dx, \] we can use the property of definite integrals that states: \[ \int_{-a}^{a} f(x) \, dx = \int_{-a}^{a} f(-x) \, dx. \] ### Step 1: Substitute \( x \) with \( -x \) We will first compute \( I \) by substituting \( x \) with \( -x \): \[ I = \int_{-1}^{1} \ln\left(\frac{2 - \sin^3(-x)}{2 + \sin^3(-x)}\right) dx. \] Since \( \sin(-x) = -\sin(x) \), we have: \[ \sin^3(-x) = (-\sin x)^3 = -\sin^3 x. \] Thus, we can rewrite the integral as: \[ I = \int_{-1}^{1} \ln\left(\frac{2 + \sin^3 x}{2 - \sin^3 x}\right) dx. \] ### Step 2: Add the two expressions for \( I \) Now we have two expressions for \( I \): 1. \( I = \int_{-1}^{1} \ln\left(\frac{2 - \sin^3 x}{2 + \sin^3 x}\right) dx \) 2. \( I = \int_{-1}^{1} \ln\left(\frac{2 + \sin^3 x}{2 - \sin^3 x}\right) dx \) Adding these two equations, we get: \[ 2I = \int_{-1}^{1} \left[ \ln\left(\frac{2 - \sin^3 x}{2 + \sin^3 x}\right) + \ln\left(\frac{2 + \sin^3 x}{2 - \sin^3 x}\right) \right] dx. \] ### Step 3: Simplify the logarithmic expression Using the property of logarithms \( \ln a + \ln b = \ln(ab) \), we can combine the logarithms: \[ 2I = \int_{-1}^{1} \ln\left(\frac{(2 - \sin^3 x)(2 + \sin^3 x)}{(2 + \sin^3 x)(2 - \sin^3 x)}\right) dx. \] This simplifies to: \[ 2I = \int_{-1}^{1} \ln(1) \, dx. \] Since \( \ln(1) = 0 \), we have: \[ 2I = \int_{-1}^{1} 0 \, dx = 0. \] ### Step 4: Solve for \( I \) Thus, we find: \[ I = 0. \] ### Final Answer The value of the definite integral is: \[ \boxed{0}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/(1+3 sin ^(2)x)dx is equal to

The value of the definite integral int_(2pi)^(5pi//2)(sin^(-1)(cosx)+cos^(-1)(sinx))dx is equal to

The value of the definite integral int_(0)^(2npi) max (sinx,sin^(-1)( sinx)) dx equals to (where, n in l)

The value of the definite integral int_0^(pi/2) ((1+sin3x)/(1+2sinx)) dx equals to

Evaluate the definite integrals int_2^3 1/x dx

Evaluate the definite integrals int_2^3(dx)/(x^2-1)

The value of the definite integral int_(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)dx equals

The value of definite integral: int_(-2014)^(2014)(dx)/(1+sin^(2015)x+sqrt(1+sin^(4030)x) equals :

If f(x) is a continuous function satisfying f(x)=f(2-x) , then the value of the integral I=int_(-3)^(3)f(1+x)ln ((2+x)/(2-x))dx is equal to

The value of the definite integral int e^(-x^4) (2+ln(x+sqrt(x^2+1))+5x^3-8x^4)dx is equal to