Home
Class 12
MATHS
If the sum of the series 1+(3)/(2)+(5)/(...

If the sum of the series `1+(3)/(2)+(5)/(4)+(7)/(8)+……+((2n-1))/((2)^(n-1))` is `f(n)`, then the value of `f(8)` is

A

`4+(12)/(2^(5))`

B

`5+(13)/(2^(7))`

C

`6-(19)/(2^(7))`

D

`5-(13)/(2^(7))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the series given by: \[ f(n) = 1 + \frac{3}{2} + \frac{5}{4} + \frac{7}{8} + \ldots + \frac{2n-1}{2^{n-1}} \] We will denote this sum as \( S_n \). ### Step 1: Write the series The series can be expressed as: \[ S_n = \sum_{k=1}^{n} \frac{2k-1}{2^{k-1}} \] ### Step 2: Multiply the series by \( \frac{1}{2} \) Now, we multiply the entire series \( S_n \) by \( \frac{1}{2} \): \[ \frac{1}{2} S_n = \frac{1}{2} + \frac{3}{4} + \frac{5}{8} + \ldots + \frac{2n-1}{2^n} \] ### Step 3: Shift the terms Notice that if we shift the terms of \( \frac{1}{2} S_n \) one place to the right, we can write: \[ \frac{1}{2} S_n = \frac{1}{2} + \frac{3}{4} + \frac{5}{8} + \ldots + \frac{2(n-1)-1}{2^{n-1}} + \frac{2n-1}{2^n} \] ### Step 4: Subtract the two series Now we subtract \( \frac{1}{2} S_n \) from \( S_n \): \[ S_n - \frac{1}{2} S_n = 1 + \left( \frac{3}{2} - \frac{1}{2} \right) + \left( \frac{5}{4} - \frac{3}{4} \right) + \ldots + \left( \frac{2n-1}{2^{n-1}} - \frac{2(n-1)-1}{2^n} \right) \] This simplifies to: \[ \frac{1}{2} S_n = 1 + \frac{2}{2} + \frac{2}{4} + \frac{2}{8} + \ldots + \frac{2}{2^{n-1}} - \frac{2n-1}{2^n} \] ### Step 5: Recognize the geometric series The series \( \frac{2}{2} + \frac{2}{4} + \frac{2}{8} + \ldots + \frac{2}{2^{n-1}} \) is a geometric series with first term \( \frac{2}{2} = 1 \) and common ratio \( \frac{1}{2} \): \[ \text{Sum} = 1 \cdot \frac{1 - \left( \frac{1}{2} \right)^{n-1}}{1 - \frac{1}{2}} = 2 \left( 1 - \frac{1}{2^{n-1}} \right) \] ### Step 6: Substitute back into the equation Now substituting back, we have: \[ \frac{1}{2} S_n = 1 + 2 \left( 1 - \frac{1}{2^{n-1}} \right) - \frac{2n-1}{2^n} \] ### Step 7: Solve for \( S_n \) Multiplying through by 2 gives: \[ S_n = 2 + 4 \left( 1 - \frac{1}{2^{n-1}} \right) - \frac{2(2n-1)}{2^n} \] Simplifying further: \[ S_n = 6 - \frac{4}{2^{n-1}} - \frac{2n-1}{2^{n-1}} = 6 - \frac{2n + 3}{2^{n-1}} \] ### Step 8: Find \( f(8) \) Now we substitute \( n = 8 \): \[ f(8) = 6 - \frac{2(8) + 3}{2^{8-1}} = 6 - \frac{19}{128} \] ### Step 9: Combine terms To combine: \[ f(8) = 6 - \frac{19}{128} = \frac{768 - 19}{128} = \frac{749}{128} \] ### Final Answer Thus, the value of \( f(8) \) is: \[ f(8) = 6 - \frac{19}{128} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum to n terms of 3 (3)/(8) + 2 (1)/(4) + 1 (1)/(2)+ .....

Find the sum of the series: (1)/((1xx3))+(1)/((3xx5))+(1)/((5xx7))+...+(1)/((2n-1)(2n+1))

The sum of the series 1^2+3^2+5^2+ ........ n

If the sum of n term of the series (5)/(1.2.3) + (6)/(2.3.4) + ( 7)/(3.4.5)+"…." is a/2 - (n+b)/((n+1)(n+2)) , then

Find the sum of the series 1 . 3^(2) + 2.5 ^(2) + 3.7^(2) +…+ to n terms

Find the sum of the series: 1. n+2.(n-1)+3.(n-2)++(n-1). 2+n .1.

Find the sum of the series: 1. n+2.(n-1)+3.(n-2)++(n-1). 2+n .1.

Let f(n)= sum_(k=1)^(n) k^2 ^"(n )C_k)^ 2 then the value of f(5) equals

Sum to n terms of the series :1 + 2 (1 + (1)/(n)) + 3 (1 + (1)/(n )) ^(2) + ………

Sum of the n terms of the series (3)/(1^(2))+(5)/(1^(2)+2^(2))+(7)/(1^(2)+2^(2)+3^(3))+"......." is