Home
Class 12
MATHS
If ((4i^(3)-i)/(2i+1))^(2)=r(cos theta+i...

If `((4i^(3)-i)/(2i+1))^(2)=r(cos theta+isin theta)`, then `cos theta+sin theta` is equal to (where, `i^(2)=-1`)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we start with the expression: \[ \left(\frac{4i^3 - i}{2i + 1}\right)^2 = r(\cos \theta + i \sin \theta) \] ### Step 1: Simplify \(4i^3 - i\) We know that \(i^2 = -1\), hence: \[ i^3 = i^2 \cdot i = -1 \cdot i = -i \] Thus, \[ 4i^3 = 4(-i) = -4i \] Now substituting this back into the expression: \[ 4i^3 - i = -4i - i = -5i \] ### Step 2: Substitute into the fraction Now we substitute \(-5i\) into the fraction: \[ \frac{-5i}{2i + 1} \] ### Step 3: Rationalize the denominator To rationalize the denominator, we multiply the numerator and denominator by the conjugate of the denominator, which is \(1 - 2i\): \[ \frac{-5i(1 - 2i)}{(2i + 1)(1 - 2i)} \] Calculating the denominator: \[ (2i + 1)(1 - 2i) = 2i - 4i^2 + 1 = 2i + 4 + 1 = 5 + 2i \] Now calculating the numerator: \[ -5i(1 - 2i) = -5i + 10i^2 = -5i - 10 = -10 - 5i \] So we have: \[ \frac{-10 - 5i}{5 + 2i} \] ### Step 4: Simplify the fraction Now we can write: \[ \frac{-10 - 5i}{5 + 2i} = \frac{-10 - 5i}{5 + 2i} \cdot \frac{5 - 2i}{5 - 2i} \] Calculating the new denominator: \[ (5 + 2i)(5 - 2i) = 25 + 4 = 29 \] Calculating the new numerator: \[ (-10 - 5i)(5 - 2i) = -50 + 20i - 25i - 10i^2 = -50 - 5i + 10 = -40 - 5i \] So we have: \[ \frac{-40 - 5i}{29} \] ### Step 5: Express in polar form Now we can express this in the form \(r(\cos \theta + i \sin \theta)\): Let: \[ z = \frac{-40}{29} - \frac{5}{29}i \] ### Step 6: Calculate \(r\) and \(\theta\) To find \(r\): \[ r = \sqrt{\left(-\frac{40}{29}\right)^2 + \left(-\frac{5}{29}\right)^2} = \sqrt{\frac{1600}{841} + \frac{25}{841}} = \sqrt{\frac{1625}{841}} = \frac{\sqrt{1625}}{29} \] Now we find \(\theta\): \[ \tan \theta = \frac{-5/29}{-40/29} = \frac{5}{40} = \frac{1}{8} \] ### Step 7: Find \(\cos \theta\) and \(\sin \theta\) Using the triangle formed: \[ \text{Opposite} = 1, \quad \text{Adjacent} = 8, \quad \text{Hypotenuse} = \sqrt{1^2 + 8^2} = \sqrt{65} \] Thus: \[ \cos \theta = \frac{8}{\sqrt{65}}, \quad \sin \theta = \frac{1}{\sqrt{65}} \] ### Step 8: Calculate \(\cos \theta + \sin \theta\) Now we can find: \[ \cos \theta + \sin \theta = \frac{8}{\sqrt{65}} + \frac{1}{\sqrt{65}} = \frac{9}{\sqrt{65}} \] ### Final Answer Thus, the final answer is: \[ \cos \theta + \sin \theta = \frac{9}{\sqrt{65}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2 cos theta + sin theta =1 then 7 cos theta + 6 sin theta is equal to

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

If sin^(3) theta+sin theta cos theta+ cos^(3) theta=1 , then theta is equal to (n in Z)

([cos theta+i sin theta)/(sin theta+i cos theta))^(4)=?

i) sec(theta) = cos(theta)

(sin theta + sin 2 theta)/( 1 + cos theta + cos 2 theta) = tan theta.

Prove : (cos theta)/(1+sin theta) + (cos theta)/(1-sin theta)= 2 sec theta

If sintheta+sin^(2)theta = 1 then cos^(2)theta+cos^(4)theta is equal to :

Prove that : sin theta cos^3 theta - cos theta sin^3 theta = 1/4 sin4theta .

(1)/( sec 2 theta) = cos ^(4) theta - sin ^(4) theta.