Home
Class 12
MATHS
If sin^(-1)((5)/(x))+sin^(-1)((12)/(x))=...

If `sin^(-1)((5)/(x))+sin^(-1)((12)/(x))=sin^(-1)((2)/(x))+cos^(-1)((2)/(x))`
then the value of x is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sin^{-1}\left(\frac{5}{x}\right) + \sin^{-1}\left(\frac{12}{x}\right) = \sin^{-1}\left(\frac{2}{x}\right) + \cos^{-1}\left(\frac{2}{x}\right), \] we start by using the identity that relates \(\sin^{-1}(y)\) and \(\cos^{-1}(y)\): \[ \sin^{-1}(y) + \cos^{-1}(y) = \frac{\pi}{2}. \] ### Step 1: Simplify the right-hand side Using the identity, we can rewrite the right-hand side: \[ \sin^{-1}\left(\frac{2}{x}\right) + \cos^{-1}\left(\frac{2}{x}\right) = \frac{\pi}{2}. \] Thus, the equation becomes: \[ \sin^{-1}\left(\frac{5}{x}\right) + \sin^{-1}\left(\frac{12}{x}\right) = \frac{\pi}{2}. \] ### Step 2: Rearranging the equation From the above equation, we can isolate one of the inverse sine terms: \[ \sin^{-1}\left(\frac{5}{x}\right) = \frac{\pi}{2} - \sin^{-1}\left(\frac{12}{x}\right). \] ### Step 3: Apply the sine function Taking the sine of both sides: \[ \frac{5}{x} = \sin\left(\frac{\pi}{2} - \sin^{-1}\left(\frac{12}{x}\right)\right). \] Using the co-function identity \(\sin\left(\frac{\pi}{2} - \theta\right) = \cos(\theta)\): \[ \frac{5}{x} = \cos\left(\sin^{-1}\left(\frac{12}{x}\right)\right). \] ### Step 4: Use the cosine identity We know that: \[ \cos\left(\sin^{-1}(y)\right) = \sqrt{1 - y^2}. \] Thus, \[ \cos\left(\sin^{-1}\left(\frac{12}{x}\right)\right) = \sqrt{1 - \left(\frac{12}{x}\right)^2} = \sqrt{1 - \frac{144}{x^2}}. \] ### Step 5: Set up the equation Now we can rewrite our equation: \[ \frac{5}{x} = \sqrt{1 - \frac{144}{x^2}}. \] ### Step 6: Square both sides Squaring both sides to eliminate the square root gives: \[ \left(\frac{5}{x}\right)^2 = 1 - \frac{144}{x^2}. \] This simplifies to: \[ \frac{25}{x^2} = 1 - \frac{144}{x^2}. \] ### Step 7: Clear the fractions Multiply through by \(x^2\) to eliminate the denominators: \[ 25 = x^2 - 144. \] ### Step 8: Rearranging the equation Rearranging gives: \[ x^2 = 169. \] ### Step 9: Solve for \(x\) Taking the square root of both sides: \[ x = 13 \quad \text{or} \quad x = -13. \] ### Step 10: Verify the solutions We need to check which of these values satisfy the original equation. 1. **For \(x = 13\)**: \[ \sin^{-1}\left(\frac{5}{13}\right) + \sin^{-1}\left(\frac{12}{13}\right) = \frac{\pi}{2}. \] This holds true. 2. **For \(x = -13\)**: \[ \sin^{-1}\left(\frac{5}{-13}\right) + \sin^{-1}\left(\frac{12}{-13}\right) = -\frac{\pi}{2} \quad \text{(not equal to } \frac{\pi}{2}). \] This does not hold true. Thus, the only valid solution is: \[ \boxed{13}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If "sin"^(-1)(1)/(3)+"sin"^(-1)(2)/(3)=sin^(-1)x , then the value of x is

If sin(sin^(-1)(1/5)+cos^(-1)x)=1 , then find the value of x.

If sin(sin^(-1)(1/5)+cos^(-1)(x))=1 Find the value of x .

If sin(sin^(-1)1/5+cos^(-1)x)=1 , then find the value of x.

If sin (sin^(-1).(1)/(5) + cos^(-1) x) = 1 , then find the value of x

If cos (2 sin^(-1) x) = (1)/(9) , then find the value of x

Let f(x)=sin^(-1)((2x)/(1+x^(2))) and g(x)=cos^(-1)((x^(2)-1)/(x^(2)+1)) . Then tha value of f(10)-g(100) is equal to

If (sin^(-1) x)^2 + (cos^(-1)x)^2 =(5pi^2)/8 then one of the values of x is

int sin^(5//2)x cos^(3)x dx = 2 sin^(A//2)x[(1)/(B)-(1)/(C) sin^(2)x]+D , then the value of (A+B)-C is equal to ........ .

If sin^(-1)(1-x)-2 sin^(-1)x=(pi)/(2) , then x is equal to