Home
Class 12
MATHS
sum(r=0)^(n)((r+2)/(r+1))*""^(n)C(r) is ...

`sum_(r=0)^(n)((r+2)/(r+1))*""^(n)C_(r)` is equal to :

A

`(2^(n)(n+2)-1)/(n+1)`

B

`(2^(n)(n+1)-1)/(n+1)`

C

`(2^(n)(n+4)-1)/(n+1)`

D

`(2^(n)(n+3)-1)/(n+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the summation: \[ y = \sum_{r=0}^{n} \frac{r+2}{r+1} \binom{n}{r} \] ### Step 1: Rewrite the term in the summation We can rewrite \(\frac{r+2}{r+1}\) as: \[ \frac{r+2}{r+1} = \frac{r+1 + 1}{r+1} = 1 + \frac{1}{r+1} \] Thus, we can express \(y\) as: \[ y = \sum_{r=0}^{n} \left(1 + \frac{1}{r+1}\right) \binom{n}{r} \] ### Step 2: Separate the summation Now, we can separate the summation into two parts: \[ y = \sum_{r=0}^{n} \binom{n}{r} + \sum_{r=0}^{n} \frac{1}{r+1} \binom{n}{r} \] ### Step 3: Evaluate the first summation The first summation is a well-known result: \[ \sum_{r=0}^{n} \binom{n}{r} = 2^n \] ### Step 4: Evaluate the second summation For the second summation, we can use the identity: \[ \sum_{r=0}^{n} \frac{1}{r+1} \binom{n}{r} = \frac{1}{n+1} \sum_{r=0}^{n} \binom{n+1}{r+1} = \frac{1}{n+1} \cdot 2^{n+1} \] This is because \(\sum_{r=0}^{n} \binom{n+1}{r+1} = 2^{n+1}\). ### Step 5: Combine the results Now we can combine both results: \[ y = 2^n + \frac{1}{n+1} \cdot 2^{n+1} \] ### Step 6: Simplify the expression We can factor out \(2^n\): \[ y = 2^n + \frac{2^{n+1}}{n+1} = 2^n \left(1 + \frac{2}{n+1}\right) \] ### Final Result Thus, the final expression for \(y\) is: \[ y = 2^n \left(\frac{n+3}{n+1}\right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :

If n is an even natural number , then sum_(r=0)^(n) (( -1)^(r))/(""^(n)C_(r)) equals

The value of sum_(r=0)^(n) r(n -r) (""^(n)C_(r))^(2) is equal to

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

The value of sum_(r=0)^(n) sum_(p=0)^(r) ""^(n)C_(r) . ""^(r)C_(p) is equal to

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is (a) 1/(n+1) (b) 1/n (c) 1/(n-1) (d) 0

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

The value of sum_(r=1)^(10) r. (""^(n)C_(r))/(""^(n)C_(r-1) is equal to

sum_(r=1)^n r(n-r) is equal to :