Home
Class 12
MATHS
The value of tan63^(@)-cot63^(@) is equa...

The value of `tan63^(@)-cot63^(@)` is equal to

A

`(sqrt5-1)/(sqrt5+1)sqrt(10+2sqrt5)`

B

`(2)/(sqrt5+1)sqrt(10+2sqrt5)`

C

`(sqrt5-1)/(4)sqrt(10-2sqrt5)`

D

`(sqrt5-1)/(4)sqrt(10+2sqrt5)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of "tan"75^(@)-"cot"75^(@) is equal to

tan(cot^(-1)x) is equal to

tan(cot^(-1)x) is equal to

If tan^(3)theta+cot^(3)theta=52 , then the value of tan^(2)theta+cot^(2)theta is equal to :

If tan^(3)theta+cot^(3)theta=52 , then the value of tan^(2)theta+cot^(2)theta is equal to :

If tan alpha + cot alpha=a , then the value of tan^(4)alpha + cot^(4)alpha is equal to

Value of tan 75^(@) + cot 75^(@) = ?

If in the triangle ABC, "tan"(A)/(2), "tan"(B)/(2) and "tan"(C )/(2) are in harmonic progression then the least value of "cot"^(2)(B)/(2) is equal to :

If a ,b , in R such that a+b=1a n d(1-2a b0(a 63+b^3)=12 . The value of (a^2+b^2) is equal to____.

Find the value of cot(tan^(-1)a+cot^(-1)a)