Home
Class 12
MATHS
The value of I=lim(nrarroo)Sigma(r=1)^(n...

The value of `I=lim_(nrarroo)Sigma_(r=1)^(n)(r)/(n^(2)+n+r)` is equal to

A

`(1)/(3)`

B

`(1)/(2)`

C

`(pi)/(2)`

D

`(pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( I = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{r}{n^2 + n + r} \), we can follow these steps: ### Step 1: Rewrite the expression We start by rewriting the expression inside the limit: \[ I = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{r}{n^2 + n + r} \] Notice that as \( n \) becomes very large, \( n^2 + n + r \) can be approximated by \( n^2 \) since \( r \) is much smaller than \( n^2 \). ### Step 2: Simplify the fraction We can factor \( n^2 \) out of the denominator: \[ I = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{r}{n^2(1 + \frac{n}{n^2} + \frac{r}{n^2})} = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{r/n^2}{1 + \frac{1}{n} + \frac{r}{n^2}} \] This simplifies to: \[ I = \lim_{n \to \infty} \frac{1}{n^2} \sum_{r=1}^{n} \frac{r}{1 + \frac{1}{n} + \frac{r}{n^2}} \] ### Step 3: Evaluate the sum The sum \( \sum_{r=1}^{n} r \) is known to be: \[ \sum_{r=1}^{n} r = \frac{n(n + 1)}{2} \] Thus, we can rewrite \( I \): \[ I = \lim_{n \to \infty} \frac{1}{n^2} \cdot \frac{n(n + 1)}{2} \cdot \frac{1}{1 + \frac{1}{n} + \frac{n(n+1)}{2n^2}} \] ### Step 4: Simplify further As \( n \to \infty \), \( \frac{1}{n} \to 0 \) and \( \frac{n(n+1)}{2n^2} \to \frac{1}{2} \): \[ I = \lim_{n \to \infty} \frac{1}{n^2} \cdot \frac{n(n + 1)}{2} \cdot \frac{1}{1 + 0 + \frac{1}{2}} = \lim_{n \to \infty} \frac{n(n + 1)}{4n^2} = \lim_{n \to \infty} \frac{n^2 + n}{4n^2} = \lim_{n \to \infty} \frac{1 + \frac{1}{n}}{4} \] ### Step 5: Take the limit Taking the limit as \( n \to \infty \): \[ I = \frac{1 + 0}{4} = \frac{1}{4} \] ### Conclusion Thus, the value of \( I \) is: \[ \boxed{\frac{1}{4}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If Sigma_(r=1)^(n)t_(r)=(1)/(6)n(n+1)(n+2), AA n ge 1, then the value of lim_(nrarroo)Sigma_(r=1)^(n)(1)/(t_(r)) is equal to

The value of lim_(nrarroo)Sigma_(r=1)^(n)(2^(r)+3^(r))/(6^(r)) is equal to

Sigma_(r=0)^(n)(n-r)(.^(n)C_(r))^(2) is equal to

The limit L=lim_(nrarroo)Sigma_(r=1)^(n)(n)/(n^(2)+r^(2)) satisfies

The value of lim_(xrarr2)Sigma_(r=1)^(7)(x^(r )-2^(r ))/(2r(x-2)) is equal to

The value of lim_(nrarroo)Sigma_(r=1)^(n)((2r)/(n^(2)))e^((r^(2))/(n^(2))) is equal to

The limit L=lim_(nrarroo)Sigma_(r=1)^(n)(n)/(n^(2)+r^(2)) satisfies the relation

The value of lim_(nto oo)(1)/(2) sum_(r-1)^(n) ((r)/(n+r)) is equal to

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

The value of lim_(xrarr1)Sigma_(r=1)^(10)=(x^(r )-1^(r ))/(2(x-1)) is equal to