Home
Class 12
MATHS
If the lines (x)/(1)=(y)/(2)=(z)/(3), (x...

If the lines `(x)/(1)=(y)/(2)=(z)/(3), (x-k)/(3)=(y-3)/(-1)=(z-4)/(h)` and `(2x+1)/(3)=(y-1)/(1)=(z-2)/(1)` are concurrent, then the value of `2h-3k` is equal to

A

3

B

2

C

`-4`

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \(2h - 3k\) given that the lines are concurrent. Let's break down the solution step by step. ### Step 1: Parametrize the lines 1. The first line is given by: \[ \frac{x}{1} = \frac{y}{2} = \frac{z}{3} \] Let \( \lambda \) be the parameter. Then we can express the coordinates as: \[ x = \lambda, \quad y = 2\lambda, \quad z = 3\lambda \] 2. The second line is given by: \[ \frac{x - k}{3} = \frac{y - 3}{-1} = \frac{z - 4}{h} \] Let \( \mu \) be the parameter. Then we can express the coordinates as: \[ x = 3\mu + k, \quad y = -\mu + 3, \quad z = h\mu + 4 \] 3. The third line is given by: \[ \frac{2x + 1}{3} = \frac{y - 1}{1} = \frac{z - 2}{1} \] Let \( \nu \) be the parameter. Then we can express the coordinates as: \[ x = \frac{3\nu - 1}{2}, \quad y = \nu + 1, \quad z = \nu + 2 \] ### Step 2: Set equations for concurrency Since the lines are concurrent, the points from the first two lines must satisfy the equations of the third line. ### Step 3: Equate the coordinates 1. From the second line: \[ 3\mu + k = \frac{3\nu - 1}{2} \quad (1) \] \[ -\mu + 3 = \nu + 1 \quad (2) \] \[ h\mu + 4 = \nu + 2 \quad (3) \] ### Step 4: Solve the equations From equation (2): \[ -\mu + 3 = \nu + 1 \implies \nu = 2 - \mu \quad (4) \] Substituting (4) into (1): \[ 3\mu + k = \frac{3(2 - \mu) - 1}{2} \] \[ 3\mu + k = \frac{6 - 3\mu - 1}{2} \] \[ 3\mu + k = \frac{5 - 3\mu}{2} \] Multiplying through by 2: \[ 6\mu + 2k = 5 - 3\mu \] \[ 9\mu + 2k = 5 \quad (5) \] Now substituting (4) into (3): \[ h\mu + 4 = (2 - \mu) + 2 \] \[ h\mu + 4 = 4 - \mu \] \[ h\mu + \mu = 0 \implies (h + 1)\mu = 0 \] This implies either \( \mu = 0 \) or \( h = -1 \). ### Step 5: Find \(k\) and \(h\) 1. If \( \mu = 0 \): From (4): \[ \nu = 2 \] Substitute \( \mu = 0 \) in (5): \[ 2k = 5 \implies k = \frac{5}{2} \] 2. If \( h = -1 \): Substitute \( h = -1 \) back into (5): \[ 9\mu + 2(-1) = 5 \implies 9\mu - 2 = 5 \implies 9\mu = 7 \implies \mu = \frac{7}{9} \] Substitute \( \mu = \frac{7}{9} \) into (4): \[ \nu = 2 - \frac{7}{9} = \frac{11}{9} \] Substitute \( \mu = \frac{7}{9} \) into (5): \[ 9 \cdot \frac{7}{9} + 2k = 5 \implies 7 + 2k = 5 \implies 2k = -2 \implies k = -1 \] ### Step 6: Calculate \(2h - 3k\) Using \( h = -1 \) and \( k = -1 \): \[ 2h - 3k = 2(-1) - 3(-1) = -2 + 3 = 1 \] ### Final Answer The value of \(2h - 3k\) is \(1\).
Promotional Banner

Similar Questions

Explore conceptually related problems

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

The lines (x-2)/(1) = (y-3)/(1) =(z-4)/(-k) and (x-3)/(k)=(y-4)/(1) = (z-5)/(1) are coplanar if the values of k are

The lines x/1=y/2=z/3 and (x-1)/(-2)=(y-2)/(-4)=(z-3)/(-6) are

If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/2 and (x-1)/(3k)=(y-1)/1=(z-6)/(-5) are perpendicular, find the value of k.

The line (x-2)/1=(y+4)/(2)=(z-3)/3 and x/2=(y-1)/(4)=(z+3)/(6) are

The lines (x-1)/1=(y-2)/2=(z-3)/(3) and (x-1)/1=y/3 =z/4 are

The lines (x-2)/1=(y-3)/2=(z-4)/(-2k) and (x-1)/k=(y-2)/3=(z-6)/1 are coplanar if

If the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(lamda) and (x-1)/(lamda)=(y-4)/(2)=(z-5)/(1) intersect then

If the lines (x-1)/(1)=(y-3)/(1)=(z-2)/(lambda) and (x-1)/(lambda)=(y-3)/(2)=(z-4)/(1) intersect at a point, then the value of lambda^(2)+4 is equal to

If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/(-2) and (x-1)/(3k)=(y-5)/1=(z-6)/(-5) are at right angle, then find the value of k .