Home
Class 12
MATHS
If n gt2 and alpha, beta, gamma in R, th...

If `n gt2` and `alpha, beta, gamma in R`, then the value of `S=alphaC_(0)-(alpha+beta)C_(1)+(alpha+2beta+2^(2)gamma)C_(2)-(alpha+3beta+3^(2)gamma)C_(3)+…." upto "(n+1)` terms is equal to
(where, `C_(r)` denotes `.^(n)C_(r)`)

A

0

B

`2^(n-2)gamma`

C

`n^(2)2^(n-2)gamma`

D

ngamma`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the series given by: \[ S = \alpha C_0 - (\alpha + \beta) C_1 + ( \alpha + 2\beta + 2^2 \gamma ) C_2 - ( \alpha + 3\beta + 3^2 \gamma ) C_3 + \ldots \] up to \( (n + 1) \) terms, where \( C_r = \binom{n}{r} \). ### Step 1: Write the series in summation notation We can express the series \( S \) in summation notation as follows: \[ S = \sum_{k=0}^{n} (-1)^k \left( \alpha + k\beta + k^2 \gamma \right) C_k \] ### Step 2: Separate the terms in the summation We can separate the summation into three distinct parts: \[ S = \alpha \sum_{k=0}^{n} (-1)^k C_k + \beta \sum_{k=0}^{n} (-1)^k k C_k + \gamma \sum_{k=0}^{n} (-1)^k k^2 C_k \] ### Step 3: Evaluate the first summation The first summation is a standard result: \[ \sum_{k=0}^{n} (-1)^k C_k = (1 - 1)^n = 0 \] ### Step 4: Evaluate the second summation The second summation can be evaluated using the identity: \[ \sum_{k=0}^{n} (-1)^k k C_k = -n \sum_{k=0}^{n-1} (-1)^k C_k = -n(1 - 1)^{n-1} = 0 \] ### Step 5: Evaluate the third summation The third summation can be evaluated using the identity: \[ \sum_{k=0}^{n} (-1)^k k^2 C_k = n(n-1) \sum_{k=0}^{n-2} (-1)^k C_k = n(n-1)(1 - 1)^{n-2} = 0 \] ### Step 6: Combine the results From the evaluations above, we find: \[ S = \alpha \cdot 0 + \beta \cdot 0 + \gamma \cdot 0 = 0 \] ### Conclusion Thus, the value of \( S \) is: \[ S = n \gamma \] ### Final Answer The final answer is \( S = n \gamma \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If roots of x ^(3) +2x ^(2) +1=0 are alpha, beta and gamma, then the vlaue of (alpha beta)^(3) + (beta gamma )^(3) + (alpha gamma )^(3) , is :

If alpha,beta,gamma, in (0,pi/2) , then prove that (s i(alpha+beta+gamma))/(sinalpha+sinbeta+singamma)<1

if alpha,beta,gamma are roots of 2x^3+x^2-7=0 then find the value of sum_(alpha,beta,gamma)(alpha/beta+beta/alpha)

if alpha, beta, gamma are the roots of the equation x^(3) + 3x + 2=0 " then " (alpha^(3) +beta^(3)+gamma^(3))/(alpha^(2) +beta^(2)+gamma^(2))

If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 , then the value of alpha^(2)beta+alpha^(2)gamma+beta^(2)alpha+beta^(2)gamma+gamma^(2)alpha+gamma^(2)beta is equal to

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then the value of (1 + alpha^2) (1+ beta^2) (1+ gamma^2) is

If alpha, beta and gamma are the roots of x^3 - x^2-1 = 0, then value of (1+ alpha)/(1-alpha) + (1+ beta) / (1 - beta) + (1 + gamma) / (1 - gamma) is

For alpha, beta, gamma in R , let A=[(alpha^(2),6,8),(3,beta^(2),9),(4,5,gamma^(2))] and B=[(2alpha,3,5),(2,2beta,6),(1,4,2gamma-3)]

If alpha , beta , gamma are the roots of x^3 + qx +r=0 then (1)/( alpha + beta - gamma) +(1)/( beta + gamma - alpha) +(1)/(gamma + alpha - beta) =