Home
Class 12
MATHS
If A=[(1,-2,1),(2,lambda,-2),(1,3,-3)] b...

If `A=[(1,-2,1),(2,lambda,-2),(1,3,-3)]` be the adjoint matrix of matrix B such that `|B|=9`, then the value of `lambda` is equal to

A

1

B

`(-77)/(4)`

C

`(23)/(2)`

D

`(-39)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \lambda \) in the matrix \( A \) given that it is the adjoint of matrix \( B \) and the determinant of \( B \) is \( |B| = 9 \). ### Step 1: Understand the relationship between the adjoint and the determinant The relationship between the determinant of a matrix \( A \) and its adjoint \( B \) is given by the formula: \[ |A| = |B|^{n-1} \] where \( n \) is the order of the matrix. Here, since \( A \) is a \( 3 \times 3 \) matrix, \( n = 3 \). ### Step 2: Substitute the values into the formula Given \( |B| = 9 \), we can substitute this into the formula: \[ |A| = |B|^{3-1} = |B|^2 = 9^2 = 81 \] ### Step 3: Calculate the determinant of matrix \( A \) Now we need to calculate the determinant of matrix \( A \): \[ A = \begin{pmatrix} 1 & -2 & 1 \\ 2 & \lambda & -2 \\ 1 & 3 & -3 \end{pmatrix} \] Using the determinant formula for a \( 3 \times 3 \) matrix: \[ |A| = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is represented as: \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] For our matrix \( A \): - \( a = 1, b = -2, c = 1 \) - \( d = 2, e = \lambda, f = -2 \) - \( g = 1, h = 3, i = -3 \) ### Step 4: Calculate each part of the determinant 1. Calculate \( ei - fh \): \[ ei - fh = \lambda \cdot (-3) - (-2) \cdot 3 = -3\lambda + 6 \] 2. Calculate \( di - fg \): \[ di - fg = 2 \cdot (-3) - (-2) \cdot 1 = -6 + 2 = -4 \] 3. Calculate \( dh - eg \): \[ dh - eg = 2 \cdot 3 - \lambda \cdot 1 = 6 - \lambda \] ### Step 5: Substitute into the determinant formula Now substituting these values into the determinant formula: \[ |A| = 1(-3\lambda + 6) - (-2)(-4) + 1(6 - \lambda) \] \[ |A| = -3\lambda + 6 - 8 + 6 - \lambda \] \[ |A| = -4\lambda + 4 \] ### Step 6: Set the determinant equal to 81 Now we set the determinant equal to 81: \[ -4\lambda + 4 = 81 \] ### Step 7: Solve for \( \lambda \) Rearranging gives: \[ -4\lambda = 81 - 4 \] \[ -4\lambda = 77 \] \[ \lambda = -\frac{77}{4} \] Thus, the value of \( \lambda \) is: \[ \lambda = -\frac{77}{4} \] ### Final Answer The value of \( \lambda \) is \( -\frac{77}{4} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(1,x,3),(1,3,3),(2,4,4)] is the adjoint of a 3xx3 matrix B and det. (B)=4 , then the value of x is ______ .

If P=[(1,alpha,3),(1,3,3),(2,4,4)] is the adjoint of a 3 x 3 matrix A and |A| = 4 , then alpha is equal to

Let A and B be two square matrices of order 3 such that |A|=3 and |B|=2 , then the value of |A^(-1).adj(B^(-1)).adj(2A^(-1))| is equal to (where adj(M) represents the adjoint matrix of M)

Let A=[(2, -1, 1),(-2, 3, -1),(-4, 4, -x)] be a matrix. If A^(2)=A , then the value of x is equal to

Let the matrix A=[(1,1),(2,2)] and B=A+A^(2)+A^(3)+A^(4) . If B=lambdaA, AA lambda in R , then the vlaue of lambda is equal to

Let A=[(1, 1),(3,3)] and B=A+A^(2)+A^(3)+A^(4) . If B=lambdaA, AA lambda in R , then the value of lambda is equal to

If the lines (x-1)/(1)=(y-3)/(1)=(z-2)/(lambda) and (x-1)/(lambda)=(y-3)/(2)=(z-4)/(1) intersect at a point, then the value of lambda^(2)+4 is equal to

If A=[{:(1,-3,2),(2," "0,2):}]" and "B=[{:(2,-1,-1),(1," "0,-1):}] , find a matrix C such that (A+B+C) is a zero matrix.

if A=[{:(2,-3),(4,-1):}]and B=[{:(3,0),(-1,2):}], then find matrix C such that 2A-B+3c is a unit matrix.

If A=[{:(1,5),(7,12):}] and B=[{:(9,1),( 7,8):}] then find a matrix C such that 3A+5B+2C is a null matrix.