Home
Class 12
MATHS
Evaluate: int(e^x)/(sqrt(4-e^(2x)))dx...

Evaluate: `int(e^x)/(sqrt(4-e^(2x)))dx`

A

0

B

1

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{e^x}{\sqrt{4 - e^{2x}}} \, dx, \] we can follow these steps: ### Step 1: Substitution Let \( t = e^x \). Then, differentiate both sides to find \( dx \): \[ dt = e^x \, dx \quad \Rightarrow \quad dx = \frac{dt}{t}. \] ### Step 2: Rewrite the Integral Substituting \( t \) into the integral, we have: \[ \int \frac{t}{\sqrt{4 - t^2}} \cdot \frac{dt}{t} = \int \frac{1}{\sqrt{4 - t^2}} \, dt. \] ### Step 3: Recognize the Integral Form The integral \( \int \frac{1}{\sqrt{4 - t^2}} \, dt \) is a standard form, which can be integrated using the formula: \[ \int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1}\left(\frac{x}{a}\right) + C, \] where \( a = 2 \) in our case. ### Step 4: Apply the Formula Applying the formula, we get: \[ \int \frac{1}{\sqrt{4 - t^2}} \, dt = \sin^{-1}\left(\frac{t}{2}\right) + C. \] ### Step 5: Substitute Back Now, substitute back \( t = e^x \): \[ \sin^{-1}\left(\frac{e^x}{2}\right) + C. \] ### Final Answer Thus, the evaluated integral is: \[ \int \frac{e^x}{\sqrt{4 - e^{2x}}} \, dx = \sin^{-1}\left(\frac{e^x}{2}\right) + C. \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int(e^x)/(sqrt(16-e^(2x)))

Evaluate: int(e^x)/(sqrt(16-e^(2x))) dx

Evaluate: (i) int(e^x)/(sqrt(4-e^(2x)))\ dx (ii) int(x^2)/(sqrt(1-x^6))\ dx

Evaluate: (i) int(e^x)/(sqrt(4-e^(2x)))\ dx (ii) int(x^2)/(sqrt(1-x^6))\ dx

Evaluate: (i) int(e^x)/(sqrt(4-e^(2x)))\ dx (ii) int(x^2)/(sqrt(1-x^6))\ dx

Evaluate: int(e^x)/(sqrt(5-4e^x-e^(2x))) dx

Evaluate: int e^x/sqrt (e^(2x)-9)dx

Evaluate: int(dx)/(sqrt(2e^(x)-1))=

Evaluate: int(e^x)/(sqrt(5-4\ e^x-e^(2x)))\ dx

Evaluate : int (1)/(sqrt(1-e^(2x))) " dx "