Home
Class 12
MATHS
Let alpha and beta are two positive root...

Let `alpha` and `beta` are two positive roots of `x^(2)-2ax+ab=0` where `0ltblta`, then the value of `S_(n)=1+2((b)/(a))+3((b)/(a))^(2)+……+(n)((b)/(a))^(n-1), AA n in N`
cannot exceed

A

`(alpha)/(beta)`

B

`|(alpha+beta)/(alpha-beta)|`

C

`|(beta)/(alpha)|`

D

`((alpha+beta)/(alpha-beta))^(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( S_n = 1 + 2\left(\frac{b}{a}\right) + 3\left(\frac{b}{a}\right)^2 + \ldots + n\left(\frac{b}{a}\right)^{n-1} \) and determine the upper limit for \( S_n \). ### Step 1: Identify the series The series can be recognized as a weighted geometric series where the first term is \( 1 \) and the common ratio is \( r = \frac{b}{a} \). ### Step 2: Use the formula for the sum of a weighted geometric series The sum of the series can be expressed using the formula for the sum of a weighted geometric series: \[ S_n = \sum_{k=1}^{n} k r^{k-1} = \frac{1 - r^n}{(1 - r)^2} - \frac{n r^n}{1 - r} \] where \( r = \frac{b}{a} \). ### Step 3: Substitute \( r \) into the formula Substituting \( r = \frac{b}{a} \) into the formula gives: \[ S_n = \frac{1 - \left(\frac{b}{a}\right)^n}{\left(1 - \frac{b}{a}\right)^2} - \frac{n \left(\frac{b}{a}\right)^n}{1 - \frac{b}{a}} \] ### Step 4: Simplify the expression Now, we simplify the expression: \[ S_n = \frac{1 - \left(\frac{b}{a}\right)^n}{\left(\frac{a - b}{a}\right)^2} - \frac{n \left(\frac{b}{a}\right)^n}{\frac{a - b}{a}} \] This simplifies to: \[ S_n = \frac{a^2(1 - \left(\frac{b}{a}\right)^n)}{(a - b)^2} - \frac{n b^n}{a^{n-1}(a - b)} \] ### Step 5: Find the limit as \( n \to \infty \) As \( n \to \infty \), if \( \left|\frac{b}{a}\right| < 1 \), the term \( \left(\frac{b}{a}\right)^n \) approaches \( 0 \). Therefore: \[ S_n \to \frac{a^2}{(a - b)^2} \] ### Step 6: Determine the maximum value Thus, the maximum value that \( S_n \) can reach is: \[ S_n \leq \frac{a^2}{(a - b)^2} \] ### Conclusion The value of \( S_n \) cannot exceed \( \frac{a^2}{(a - b)^2} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha and beta be the roots of x^2-6x-2=0 with alpha>beta if a_n=alpha^n-beta^n for n>=1 then the value of (a_10 - 2a_8)/(2a_9)

If alpha and beta be the roots of the equation x^(2)-2x+2=0 , then the least value of n for which ((alpha)/(beta))^(n)=1 is:

If alpha and beta are the roots of x^(2)+4x+6=0 and N=1/((alpha)/(beta)+(beta)/(alpha)) then N=

Let alpha and beta be the roots of the equation x^2-6x-2=0 If a_n=alpha^n-beta^n for ngt=0 then find the value of (a_10-2a_8)/(2a_9)

If alpha and beta are roots of the equation x^(2)-3x+1=0 and a_(n)=alpha^(n)+beta^(n)-1 then find the value of (a_(5)-a_(1))/(a_(3)-a_(1))

If ""_(alpha)and _(beta) are the roots of equation x^(2)-3x+1=0and a_(n)=alpha^n+beta^(n),ninN then value of (a_(7)+a_(5))/(a_(6))=

If alphaa n dbeta are the roots of x^2-a(x-1)+b=0 then find the value of 1//(alpha^2-aalpha)+1//(beta^2-beta)+2//a+bdot

Let alpha and beta be the roots x^2-6x-2=0, with alpha > beta If a_n=alpha^n-beta^n for or n >= 1 then the value of (a_10-2a_8)/(2a_9) is (a) 1 (b) 2 (c) 3 (d) 4

Let x^2-3x+p=0 has two positive roots aa n db , then minimum value if (4/a+1/b) is,

If alpha, beta are roots of equation x^(2)-4x-3=0 and s_(n)=alpha^(n)+beta^(n), n in N then the value of (s_(7)-4s_(6))/s_(5) is